Mohammed Foud
commited on
Commit
·
dc961fb
1
Parent(s):
b3ed9e6
first commit
Browse files- Dockerfile +5 -0
- app.py +120 -0
- requirements.txt +2 -1
Dockerfile
CHANGED
@@ -22,6 +22,11 @@ RUN pip install --no-cache-dir -r requirements.txt && \
|
|
22 |
python -m textblob.download_corpora && \
|
23 |
python -c "import nltk; nltk.download('punkt'); nltk.download('averaged_perceptron_tagger'); nltk.download('wordnet')"
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
# Copy the rest of the application
|
26 |
COPY . .
|
27 |
|
|
|
22 |
python -m textblob.download_corpora && \
|
23 |
python -c "import nltk; nltk.download('punkt'); nltk.download('averaged_perceptron_tagger'); nltk.download('wordnet')"
|
24 |
|
25 |
+
# Install additional system dependencies for sentence-transformers
|
26 |
+
RUN apt-get update && apt-get install -y \
|
27 |
+
build-essential \
|
28 |
+
&& rm -rf /var/lib/apt/lists/*
|
29 |
+
|
30 |
# Copy the rest of the application
|
31 |
COPY . .
|
32 |
|
app.py
CHANGED
@@ -13,6 +13,9 @@ from collections import defaultdict
|
|
13 |
from tabulate import tabulate
|
14 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
15 |
from sklearn.cluster import KMeans
|
|
|
|
|
|
|
16 |
|
17 |
# Load models and initialize components
|
18 |
model_path = "./final_model"
|
@@ -313,6 +316,123 @@ def add_clusters_to_df(df):
|
|
313 |
|
314 |
return df
|
315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
# Create and launch the interface
|
317 |
if __name__ == "__main__":
|
318 |
demo = create_interface()
|
|
|
13 |
from tabulate import tabulate
|
14 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
15 |
from sklearn.cluster import KMeans
|
16 |
+
from sentence_transformers import SentenceTransformer
|
17 |
+
from sklearn.decomposition import PCA
|
18 |
+
from collections import Counter
|
19 |
|
20 |
# Load models and initialize components
|
21 |
model_path = "./final_model"
|
|
|
316 |
|
317 |
return df
|
318 |
|
319 |
+
def generate_category_summaries(df):
|
320 |
+
"""Generate product summaries in table format"""
|
321 |
+
# First, ensure we have clusters
|
322 |
+
if 'cluster_name' not in df.columns:
|
323 |
+
df = create_clusters(df)
|
324 |
+
|
325 |
+
summaries = {}
|
326 |
+
|
327 |
+
for cluster_name in df['cluster_name'].unique():
|
328 |
+
cluster_df = df[df['cluster_name'] == cluster_name]
|
329 |
+
|
330 |
+
# Get top products by rating
|
331 |
+
top_products = cluster_df.groupby('name').agg({
|
332 |
+
'reviews.rating': ['mean', 'count'],
|
333 |
+
'reviews.text': list
|
334 |
+
}).reset_index()
|
335 |
+
|
336 |
+
top_products.columns = ['name', 'avg_rating', 'review_count', 'reviews']
|
337 |
+
top_products = top_products[top_products['review_count'] >= 5] # Min reviews threshold
|
338 |
+
top_products = top_products.sort_values('avg_rating', ascending=False)
|
339 |
+
|
340 |
+
if len(top_products) < 3:
|
341 |
+
continue
|
342 |
+
|
343 |
+
# Get top 3 and worst products
|
344 |
+
top_3 = top_products.head(3)
|
345 |
+
worst_product = top_products.tail(1)
|
346 |
+
|
347 |
+
# Analyze reviews for each product
|
348 |
+
product_details = []
|
349 |
+
for _, product in top_3.iterrows():
|
350 |
+
pros, cons = analyze_sentiment(product['reviews'])
|
351 |
+
product_details.append({
|
352 |
+
'name': product['name'],
|
353 |
+
'rating': product['avg_rating'],
|
354 |
+
'review_count': product['review_count'],
|
355 |
+
'pros': pros[:3] or ["No significant positive feedback"],
|
356 |
+
'cons': cons[:3] or ["No major complaints"]
|
357 |
+
})
|
358 |
+
|
359 |
+
# Format tables
|
360 |
+
tables = []
|
361 |
+
|
362 |
+
# Top Products Table
|
363 |
+
top_table = []
|
364 |
+
for product in product_details:
|
365 |
+
top_table.append([
|
366 |
+
product['name'],
|
367 |
+
f"★{product['rating']:.1f}",
|
368 |
+
product['review_count'],
|
369 |
+
"\n".join(product['pros']),
|
370 |
+
"\n".join(product['cons'])
|
371 |
+
])
|
372 |
+
|
373 |
+
tables.append({
|
374 |
+
'section': f"TOP PRODUCTS IN {cluster_name.upper()}",
|
375 |
+
'headers': ["Product", "Rating", "Reviews", "Pros", "Cons"],
|
376 |
+
'data': top_table
|
377 |
+
})
|
378 |
+
|
379 |
+
# Worst Product Table
|
380 |
+
if not worst_product.empty:
|
381 |
+
worst = worst_product.iloc[0]
|
382 |
+
pros, cons = analyze_sentiment(worst['reviews'])
|
383 |
+
tables.append({
|
384 |
+
'section': "PRODUCT TO AVOID",
|
385 |
+
'headers': ["Product", "Rating", "Reasons to Avoid"],
|
386 |
+
'data': [[
|
387 |
+
worst['name'],
|
388 |
+
f"★{worst['avg_rating']:.1f}",
|
389 |
+
", ".join(cons[:3]) if cons else "Consistently poor ratings"
|
390 |
+
]]
|
391 |
+
})
|
392 |
+
|
393 |
+
summaries[cluster_name] = tables
|
394 |
+
|
395 |
+
return summaries
|
396 |
+
|
397 |
+
def create_clusters(df):
|
398 |
+
"""Create clusters from product data"""
|
399 |
+
# Prepare product data
|
400 |
+
products = df[['name', 'categories']].drop_duplicates()
|
401 |
+
product_texts = (products['name'] + " " + products['categories']).tolist()
|
402 |
+
|
403 |
+
# Create embeddings
|
404 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
405 |
+
embeddings = model.encode(product_texts, show_progress_bar=True)
|
406 |
+
|
407 |
+
# Perform clustering
|
408 |
+
num_clusters = 4
|
409 |
+
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
410 |
+
clusters = kmeans.fit_predict(embeddings)
|
411 |
+
products['cluster'] = clusters
|
412 |
+
|
413 |
+
# Generate cluster names
|
414 |
+
cluster_names = {}
|
415 |
+
for cluster_num in range(num_clusters):
|
416 |
+
cluster_df = products[products['cluster'] == cluster_num]
|
417 |
+
|
418 |
+
# Get descriptive words from product names
|
419 |
+
words = []
|
420 |
+
for name in cluster_df['name']:
|
421 |
+
words += name.lower().split()
|
422 |
+
|
423 |
+
# Get top words for cluster name
|
424 |
+
top_words = [word for word, count in Counter(words).most_common(10)
|
425 |
+
if len(word) > 3][:3]
|
426 |
+
label = ' '.join(top_words)
|
427 |
+
cluster_names[cluster_num] = label
|
428 |
+
|
429 |
+
# Map clusters to original dataframe
|
430 |
+
product_to_cluster = dict(zip(products['name'], products['cluster']))
|
431 |
+
df['cluster'] = df['name'].map(product_to_cluster)
|
432 |
+
df['cluster_name'] = df['cluster'].map(cluster_names)
|
433 |
+
|
434 |
+
return df
|
435 |
+
|
436 |
# Create and launch the interface
|
437 |
if __name__ == "__main__":
|
438 |
demo = create_interface()
|
requirements.txt
CHANGED
@@ -8,4 +8,5 @@ transformers>=4.30.0
|
|
8 |
scikit-learn>=1.2.0
|
9 |
textblob>=0.17.1
|
10 |
tabulate>=0.9.0
|
11 |
-
nltk>=3.8.1
|
|
|
|
8 |
scikit-learn>=1.2.0
|
9 |
textblob>=0.17.1
|
10 |
tabulate>=0.9.0
|
11 |
+
nltk>=3.8.1
|
12 |
+
sentence-transformers>=2.2.0
|