Mohammed Foud
commited on
Commit
·
31f3e54
1
Parent(s):
dc51e14
first commit
Browse files- .cursorignore +2 -1
- app.py +113 -29
.cursorignore
CHANGED
@@ -10,4 +10,5 @@ etc
|
|
10 |
.vscode
|
11 |
.env
|
12 |
.env.local
|
13 |
-
dataset.csv
|
|
|
|
10 |
.vscode
|
11 |
.env
|
12 |
.env.local
|
13 |
+
dataset.csv
|
14 |
+
final_model
|
app.py
CHANGED
@@ -8,12 +8,19 @@ import torch
|
|
8 |
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
|
9 |
import io
|
10 |
import base64
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load the model and tokenizer
|
13 |
model_path = "./final_model"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
15 |
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
16 |
|
|
|
|
|
|
|
17 |
def predict_sentiment(text):
|
18 |
# Preprocess text
|
19 |
text = text.lower()
|
@@ -38,14 +45,87 @@ def predict_sentiment(text):
|
|
38 |
|
39 |
return sentiment, prob_dict
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def analyze_reviews(reviews_text):
|
42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
reviews = [r.strip() for r in reviews_text.split('\n') if r.strip()]
|
44 |
|
45 |
if not reviews:
|
46 |
return "Please enter at least one review.", None
|
47 |
|
48 |
-
# Process each review
|
49 |
results = []
|
50 |
for review in reviews:
|
51 |
sentiment, probs = predict_sentiment(review)
|
@@ -55,10 +135,8 @@ def analyze_reviews(reviews_text):
|
|
55 |
'Confidence': probs
|
56 |
})
|
57 |
|
58 |
-
# Create DataFrame for display
|
59 |
df = pd.DataFrame(results)
|
60 |
|
61 |
-
# Create visualization
|
62 |
plt.figure(figsize=(10, 6))
|
63 |
sentiment_counts = df['Sentiment'].value_counts()
|
64 |
plt.bar(sentiment_counts.index, sentiment_counts.values)
|
@@ -66,7 +144,6 @@ def analyze_reviews(reviews_text):
|
|
66 |
plt.xlabel('Sentiment')
|
67 |
plt.ylabel('Count')
|
68 |
|
69 |
-
# Save plot to bytes
|
70 |
buf = io.BytesIO()
|
71 |
plt.savefig(buf, format='png')
|
72 |
buf.seek(0)
|
@@ -76,32 +153,39 @@ def analyze_reviews(reviews_text):
|
|
76 |
return df, f'<img src="data:image/png;base64,{plot_base64}" style="max-width:100%;">'
|
77 |
|
78 |
# Create Gradio interface
|
79 |
-
|
80 |
-
gr.
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
with gr.Column():
|
85 |
reviews_input = gr.Textbox(
|
86 |
-
label="Enter
|
87 |
-
placeholder="Enter
|
88 |
-
lines=
|
89 |
)
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
)
|
98 |
-
plot_output = gr.HTML()
|
99 |
|
100 |
-
|
101 |
-
fn=analyze_reviews,
|
102 |
-
inputs=reviews_input,
|
103 |
-
outputs=[results_table, plot_output]
|
104 |
-
)
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
8 |
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
|
9 |
import io
|
10 |
import base64
|
11 |
+
from textblob import TextBlob
|
12 |
+
from collections import defaultdict
|
13 |
+
from tabulate import tabulate
|
14 |
+
from transformers import pipeline
|
15 |
|
16 |
# Load the model and tokenizer
|
17 |
model_path = "./final_model"
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
19 |
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
20 |
|
21 |
+
# Initialize the summarizer
|
22 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
23 |
+
|
24 |
def predict_sentiment(text):
|
25 |
# Preprocess text
|
26 |
text = text.lower()
|
|
|
45 |
|
46 |
return sentiment, prob_dict
|
47 |
|
48 |
+
def analyze_sentiment(reviews):
|
49 |
+
"""Perform sentiment analysis on reviews"""
|
50 |
+
pros = defaultdict(int)
|
51 |
+
cons = defaultdict(int)
|
52 |
+
|
53 |
+
for review in reviews:
|
54 |
+
blob = TextBlob(str(review))
|
55 |
+
for sentence in blob.sentences:
|
56 |
+
polarity = sentence.sentiment.polarity
|
57 |
+
words = [word for word, tag in blob.tags
|
58 |
+
if tag in ('NN', 'NNS', 'JJ', 'JJR', 'JJS')]
|
59 |
+
|
60 |
+
if polarity > 0.3: # Positive
|
61 |
+
for word in words:
|
62 |
+
pros[word] += 1
|
63 |
+
elif polarity < -0.3: # Negative
|
64 |
+
for word in words:
|
65 |
+
cons[word] += 1
|
66 |
+
|
67 |
+
pros_sorted = [k for k, _ in sorted(pros.items(), key=lambda x: -x[1])] if pros else []
|
68 |
+
cons_sorted = [k for k, _ in sorted(cons.items(), key=lambda x: -x[1])] if cons else []
|
69 |
+
|
70 |
+
return pros_sorted, cons_sorted
|
71 |
+
|
72 |
+
def generate_category_summary(reviews_text):
|
73 |
+
"""Generate summary for a set of reviews"""
|
74 |
+
reviews = [r.strip() for r in reviews_text.split('\n') if r.strip()]
|
75 |
+
|
76 |
+
if not reviews:
|
77 |
+
return "Please enter at least one review."
|
78 |
+
|
79 |
+
# Analyze sentiment and get pros/cons
|
80 |
+
pros, cons = analyze_sentiment(reviews)
|
81 |
+
|
82 |
+
# Create summary text
|
83 |
+
summary_text = f"""
|
84 |
+
Review Analysis Summary:
|
85 |
+
|
86 |
+
PROS:
|
87 |
+
{', '.join(pros[:5]) if pros else 'No significant positive feedback'}
|
88 |
+
|
89 |
+
CONS:
|
90 |
+
{', '.join(cons[:5]) if cons else 'No major complaints'}
|
91 |
+
|
92 |
+
Based on {len(reviews)} reviews analyzed.
|
93 |
+
"""
|
94 |
+
|
95 |
+
# Generate concise summary using BART
|
96 |
+
if len(summary_text) > 100:
|
97 |
+
try:
|
98 |
+
generated_summary = summarizer(
|
99 |
+
summary_text,
|
100 |
+
max_length=150,
|
101 |
+
min_length=50,
|
102 |
+
do_sample=False,
|
103 |
+
truncation=True
|
104 |
+
)[0]['summary_text']
|
105 |
+
except Exception as e:
|
106 |
+
generated_summary = f"Error generating summary: {str(e)}"
|
107 |
+
else:
|
108 |
+
generated_summary = summary_text
|
109 |
+
|
110 |
+
return generated_summary
|
111 |
+
|
112 |
def analyze_reviews(reviews_text):
|
113 |
+
# Original sentiment analysis
|
114 |
+
df, plot_html = analyze_reviews_sentiment(reviews_text)
|
115 |
+
|
116 |
+
# Generate summary
|
117 |
+
summary = generate_category_summary(reviews_text)
|
118 |
+
|
119 |
+
return df, plot_html, summary
|
120 |
+
|
121 |
+
# Rename original analyze_reviews to analyze_reviews_sentiment
|
122 |
+
def analyze_reviews_sentiment(reviews_text):
|
123 |
+
# Original implementation
|
124 |
reviews = [r.strip() for r in reviews_text.split('\n') if r.strip()]
|
125 |
|
126 |
if not reviews:
|
127 |
return "Please enter at least one review.", None
|
128 |
|
|
|
129 |
results = []
|
130 |
for review in reviews:
|
131 |
sentiment, probs = predict_sentiment(review)
|
|
|
135 |
'Confidence': probs
|
136 |
})
|
137 |
|
|
|
138 |
df = pd.DataFrame(results)
|
139 |
|
|
|
140 |
plt.figure(figsize=(10, 6))
|
141 |
sentiment_counts = df['Sentiment'].value_counts()
|
142 |
plt.bar(sentiment_counts.index, sentiment_counts.values)
|
|
|
144 |
plt.xlabel('Sentiment')
|
145 |
plt.ylabel('Count')
|
146 |
|
|
|
147 |
buf = io.BytesIO()
|
148 |
plt.savefig(buf, format='png')
|
149 |
buf.seek(0)
|
|
|
153 |
return df, f'<img src="data:image/png;base64,{plot_base64}" style="max-width:100%;">'
|
154 |
|
155 |
# Create Gradio interface
|
156 |
+
def create_interface():
|
157 |
+
with gr.Blocks() as demo:
|
158 |
+
gr.Markdown("# Review Analysis System")
|
159 |
+
|
160 |
+
with gr.Tab("Review Analysis"):
|
|
|
161 |
reviews_input = gr.Textbox(
|
162 |
+
label="Enter reviews (one per line)",
|
163 |
+
placeholder="Enter product reviews here...",
|
164 |
+
lines=5
|
165 |
)
|
166 |
+
analyze_button = gr.Button("Analyze Reviews")
|
167 |
+
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Column():
|
170 |
+
sentiment_output = gr.Dataframe(
|
171 |
+
label="Sentiment Analysis Results"
|
172 |
+
)
|
173 |
+
plot_output = gr.HTML(label="Sentiment Distribution")
|
174 |
+
|
175 |
+
with gr.Column():
|
176 |
+
summary_output = gr.Textbox(
|
177 |
+
label="Review Summary",
|
178 |
+
lines=5
|
179 |
+
)
|
180 |
|
181 |
+
analyze_button.click(
|
182 |
+
analyze_reviews,
|
183 |
+
inputs=[reviews_input],
|
184 |
+
outputs=[sentiment_output, plot_output, summary_output]
|
185 |
+
)
|
|
|
|
|
186 |
|
187 |
+
return demo
|
|
|
|
|
|
|
|
|
188 |
|
189 |
+
# Create and launch the interface
|
190 |
+
demo = create_interface()
|
191 |
+
demo.launch()
|