Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
from PIL import Image | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline | |
import jax.numpy as jnp | |
import numpy as np | |
title = "🧨 ControlNet on Segment Anything 🤗" | |
description = "This is a demo on ControlNet based on Segment Anything" | |
examples = [["a modern main room of a house", "low quality", "condition_image_1.png", 50, 4]] | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
"mfidabel/controlnet-segment-anything", dtype=jnp.float32 | |
) | |
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 | |
) | |
# Add ControlNet params and Replicate | |
params["controlnet"] = controlnet_params | |
p_params = replicate(params) | |
# Inference Function | |
def infer(prompts, negative_prompts, image, num_inference_steps, seed): | |
rng = jax.random.PRNGKey(int(seed)) | |
num_inference_steps = int(num_inference_steps) | |
image = Image.fromarray(image, mode="RGB") | |
num_samples = jax.device_count() | |
p_rng = jax.random.split(rng, jax.device_count()) | |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
prompt_ids = shard(prompt_ids) | |
negative_prompt_ids = shard(negative_prompt_ids) | |
processed_image = shard(processed_image) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=p_params, | |
prng_seed=p_rng, | |
num_inference_steps=num_inference_steps, | |
neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
print(output[0].shape) | |
final_image = [np.array(x[0]*255, dtype=np.uint8) for x in output] | |
del output | |
return final_image | |
gr.Interface(fn = infer, | |
inputs = ["text", "text", "image", "number", "number"], | |
outputs = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(columns=[2], rows=[2], object_fit="contain", height="auto", preview=True), | |
title = title, | |
description = description, | |
examples = examples).launch() |