Spaces:
Configuration error
Configuration error
| import inspect | |
| from dataclasses import dataclass | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, LMSDiscreteScheduler, | |
| PNDMScheduler) | |
| from diffusers.utils import BaseOutput, is_accelerate_available | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from einops import rearrange | |
| from tqdm import tqdm | |
| from transformers import CLIPImageProcessor | |
| from src.models.mutual_self_attention import ReferenceAttentionControl | |
| class Pose2VideoPipelineOutput(BaseOutput): | |
| videos: Union[torch.Tensor, np.ndarray] | |
| middle_results: Union[torch.Tensor, np.ndarray] | |
| class Pose2VideoPipeline(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae, | |
| image_encoder, | |
| reference_unet, | |
| denoising_unet, | |
| pose_guider, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| image_proj_model=None, | |
| tokenizer=None, | |
| text_encoder=None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| image_encoder=image_encoder, | |
| reference_unet=reference_unet, | |
| denoising_unet=denoising_unet, | |
| pose_guider=pose_guider, | |
| scheduler=scheduler, | |
| image_proj_model=image_proj_model, | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.clip_image_processor = CLIPImageProcessor() | |
| self.ref_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True | |
| ) | |
| self.cond_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, | |
| do_convert_rgb=True, | |
| do_normalize=False, | |
| ) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def decode_latents(self, latents): | |
| video_length = latents.shape[2] | |
| latents = 1 / 0.18215 * latents | |
| latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
| # video = self.vae.decode(latents).sample | |
| video = [] | |
| for frame_idx in tqdm(range(latents.shape[0])): | |
| video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) | |
| video = torch.cat(video) | |
| video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
| video = (video / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| video = video.cpu().float().numpy() | |
| return video | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| width, | |
| height, | |
| video_length, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| video_length, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor( | |
| shape, generator=generator, device=device, dtype=dtype | |
| ) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_videos_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| ): | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| if ( | |
| hasattr(self.text_encoder.config, "use_attention_mask") | |
| and self.text_encoder.config.use_attention_mask | |
| ): | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| text_embeddings = text_embeddings.view( | |
| bs_embed * num_videos_per_prompt, seq_len, -1 | |
| ) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if ( | |
| hasattr(self.text_encoder.config, "use_attention_mask") | |
| and self.text_encoder.config.use_attention_mask | |
| ): | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| uncond_embeddings = uncond_embeddings.view( | |
| batch_size * num_videos_per_prompt, seq_len, -1 | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def __call__( | |
| self, | |
| ref_image, | |
| pose_images, | |
| width, | |
| height, | |
| video_length, | |
| num_inference_steps, | |
| guidance_scale, | |
| num_images_per_prompt=1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "tensor", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| **kwargs, | |
| ): | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| batch_size = 1 | |
| # Prepare clip image embeds | |
| clip_image = self.clip_image_processor.preprocess( | |
| ref_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image_embeds = self.image_encoder( | |
| clip_image.to(device, dtype=self.image_encoder.dtype) | |
| ).image_embeds | |
| encoder_hidden_states = clip_image_embeds.unsqueeze(1) | |
| uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states) | |
| if do_classifier_free_guidance: | |
| encoder_hidden_states = torch.cat( | |
| [uncond_encoder_hidden_states, encoder_hidden_states], dim=0 | |
| ) | |
| reference_control_writer = ReferenceAttentionControl( | |
| self.reference_unet, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| mode="write", | |
| batch_size=batch_size, | |
| fusion_blocks="full", | |
| ) | |
| reference_control_reader = ReferenceAttentionControl( | |
| self.denoising_unet, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| mode="read", | |
| batch_size=batch_size, | |
| fusion_blocks="full", | |
| ) | |
| num_channels_latents = self.denoising_unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| width, | |
| height, | |
| video_length, | |
| clip_image_embeds.dtype, | |
| device, | |
| generator, | |
| ) | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # Prepare ref image latents | |
| ref_image_tensor = self.ref_image_processor.preprocess( | |
| ref_image, height=height, width=width | |
| ) # (bs, c, width, height) | |
| ref_image_tensor = ref_image_tensor.to( | |
| dtype=self.vae.dtype, device=self.vae.device | |
| ) | |
| ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean | |
| ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w) | |
| # Prepare a list of pose condition images | |
| pose_cond_tensor_list = [] | |
| for pose_image in pose_images: | |
| pose_cond_tensor = ( | |
| torch.from_numpy(np.array(pose_image.resize((width, height)))) / 255.0 | |
| ) | |
| pose_cond_tensor = pose_cond_tensor.permute(2, 0, 1).unsqueeze( | |
| 1 | |
| ) # (c, 1, h, w) | |
| pose_cond_tensor_list.append(pose_cond_tensor) | |
| pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=1) # (c, t, h, w) | |
| pose_cond_tensor = pose_cond_tensor.unsqueeze(0) | |
| pose_cond_tensor = pose_cond_tensor.to( | |
| device=device, dtype=self.pose_guider.dtype | |
| ) | |
| pose_fea = self.pose_guider(pose_cond_tensor) | |
| pose_fea = ( | |
| torch.cat([pose_fea] * 2) if do_classifier_free_guidance else pose_fea | |
| ) | |
| # denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # 1. Forward reference image | |
| if i == 0: | |
| self.reference_unet( | |
| ref_image_latents.repeat( | |
| (2 if do_classifier_free_guidance else 1), 1, 1, 1 | |
| ), | |
| torch.zeros_like(t), | |
| # t, | |
| encoder_hidden_states=encoder_hidden_states, | |
| return_dict=False, | |
| ) | |
| reference_control_reader.update(reference_control_writer) | |
| # 3.1 expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| noise_pred = self.denoising_unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=encoder_hidden_states, | |
| pose_cond_fea=pose_fea, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| reference_control_reader.clear() | |
| reference_control_writer.clear() | |
| # Post-processing | |
| images = self.decode_latents(latents) # (b, c, f, h, w) | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| images = torch.from_numpy(images) | |
| if not return_dict: | |
| return images | |
| return Pose2VideoPipelineOutput(videos=images) | |