OcTra / df_local /deepfilternet2.py
arcan3's picture
adding rust
35916c5
raw
history blame
17.8 kB
from functools import partial
from typing import Final, List, Optional, Tuple, Union
import torch
from loguru import logger
from torch import Tensor, nn
from df_local.config import Csv, DfParams, config
from df_local.modules import (
Conv2dNormAct,
ConvTranspose2dNormAct,
DfOp,
GroupedGRU,
GroupedLinear,
GroupedLinearEinsum,
Mask,
SqueezedGRU,
erb_fb,
get_device,
)
from df_local.multiframe import MF_METHODS, MultiFrameModule
from libdf import DF
class ModelParams(DfParams):
section = "deepfilternet"
def __init__(self):
super().__init__()
self.conv_lookahead: int = config(
"CONV_LOOKAHEAD", cast=int, default=0, section=self.section
)
self.conv_ch: int = config("CONV_CH", cast=int, default=16, section=self.section)
self.conv_depthwise: bool = config(
"CONV_DEPTHWISE", cast=bool, default=True, section=self.section
)
self.convt_depthwise: bool = config(
"CONVT_DEPTHWISE", cast=bool, default=True, section=self.section
)
self.conv_kernel: List[int] = config(
"CONV_KERNEL", cast=Csv(int), default=(1, 3), section=self.section # type: ignore
)
self.conv_kernel_inp: List[int] = config(
"CONV_KERNEL_INP", cast=Csv(int), default=(3, 3), section=self.section # type: ignore
)
self.emb_hidden_dim: int = config(
"EMB_HIDDEN_DIM", cast=int, default=256, section=self.section
)
self.emb_num_layers: int = config(
"EMB_NUM_LAYERS", cast=int, default=2, section=self.section
)
self.df_hidden_dim: int = config(
"DF_HIDDEN_DIM", cast=int, default=256, section=self.section
)
self.df_gru_skip: str = config("DF_GRU_SKIP", default="none", section=self.section)
self.df_output_layer: str = config(
"DF_OUTPUT_LAYER", default="linear", section=self.section
)
self.df_pathway_kernel_size_t: int = config(
"DF_PATHWAY_KERNEL_SIZE_T", cast=int, default=1, section=self.section
)
self.enc_concat: bool = config("ENC_CONCAT", cast=bool, default=False, section=self.section)
self.df_num_layers: int = config("DF_NUM_LAYERS", cast=int, default=3, section=self.section)
self.df_n_iter: int = config("DF_N_ITER", cast=int, default=2, section=self.section)
self.gru_type: str = config("GRU_TYPE", default="grouped", section=self.section)
self.gru_groups: int = config("GRU_GROUPS", cast=int, default=1, section=self.section)
self.lin_groups: int = config("LINEAR_GROUPS", cast=int, default=1, section=self.section)
self.group_shuffle: bool = config(
"GROUP_SHUFFLE", cast=bool, default=True, section=self.section
)
self.dfop_method: str = config("DFOP_METHOD", cast=str, default="df", section=self.section)
self.mask_pf: bool = config("MASK_PF", cast=bool, default=False, section=self.section)
def init_model(df_state: Optional[DF] = None, run_df: bool = True, train_mask: bool = True):
p = ModelParams()
if df_state is None:
df_state = DF(sr=p.sr, fft_size=p.fft_size, hop_size=p.hop_size, nb_bands=p.nb_erb)
erb = erb_fb(df_state.erb_widths(), p.sr, inverse=False)
erb_inverse = erb_fb(df_state.erb_widths(), p.sr, inverse=True)
model = DfNet(erb, erb_inverse, run_df, train_mask)
return model.to(device=get_device())
class Add(nn.Module):
def forward(self, a, b):
return a + b
class Concat(nn.Module):
def forward(self, a, b):
return torch.cat((a, b), dim=-1)
class Encoder(nn.Module):
def __init__(self):
super().__init__()
p = ModelParams()
assert p.nb_erb % 4 == 0, "erb_bins should be divisible by 4"
self.erb_conv0 = Conv2dNormAct(
1, p.conv_ch, kernel_size=p.conv_kernel_inp, bias=False, separable=True
)
conv_layer = partial(
Conv2dNormAct,
in_ch=p.conv_ch,
out_ch=p.conv_ch,
kernel_size=p.conv_kernel,
bias=False,
separable=True,
)
self.erb_conv1 = conv_layer(fstride=2)
self.erb_conv2 = conv_layer(fstride=2)
self.erb_conv3 = conv_layer(fstride=1)
self.df_conv0 = Conv2dNormAct(
2, p.conv_ch, kernel_size=p.conv_kernel_inp, bias=False, separable=True
)
self.df_conv1 = conv_layer(fstride=2)
self.erb_bins = p.nb_erb
self.emb_in_dim = p.conv_ch * p.nb_erb // 4
self.emb_out_dim = p.emb_hidden_dim
if p.gru_type == "grouped":
self.df_fc_emb = GroupedLinear(
p.conv_ch * p.nb_df // 2, self.emb_in_dim, groups=p.lin_groups
)
else:
df_fc_emb = GroupedLinearEinsum(
p.conv_ch * p.nb_df // 2, self.emb_in_dim, groups=p.lin_groups
)
self.df_fc_emb = nn.Sequential(df_fc_emb, nn.ReLU(inplace=True))
if p.enc_concat:
self.emb_in_dim *= 2
self.combine = Concat()
else:
self.combine = Add()
self.emb_out_dim = p.emb_hidden_dim
self.emb_n_layers = p.emb_num_layers
assert p.gru_type in ("grouped", "squeeze"), f"But got {p.gru_type}"
if p.gru_type == "grouped":
self.emb_gru = GroupedGRU(
self.emb_in_dim,
self.emb_out_dim,
num_layers=1,
batch_first=True,
groups=p.gru_groups,
shuffle=p.group_shuffle,
add_outputs=True,
)
else:
self.emb_gru = SqueezedGRU(
self.emb_in_dim,
self.emb_out_dim,
num_layers=1,
batch_first=True,
linear_groups=p.lin_groups,
linear_act_layer=partial(nn.ReLU, inplace=True),
)
self.lsnr_fc = nn.Sequential(nn.Linear(self.emb_out_dim, 1), nn.Sigmoid())
self.lsnr_scale = p.lsnr_max - p.lsnr_min
self.lsnr_offset = p.lsnr_min
def forward(
self, feat_erb: Tensor, feat_spec: Tensor
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
# Encodes erb; erb should be in dB scale + normalized; Fe are number of erb bands.
# erb: [B, 1, T, Fe]
# spec: [B, 2, T, Fc]
# b, _, t, _ = feat_erb.shape
e0 = self.erb_conv0(feat_erb) # [B, C, T, F]
e1 = self.erb_conv1(e0) # [B, C*2, T, F/2]
e2 = self.erb_conv2(e1) # [B, C*4, T, F/4]
e3 = self.erb_conv3(e2) # [B, C*4, T, F/4]
c0 = self.df_conv0(feat_spec) # [B, C, T, Fc]
c1 = self.df_conv1(c0) # [B, C*2, T, Fc]
cemb = c1.permute(0, 2, 3, 1).flatten(2) # [B, T, -1]
cemb = self.df_fc_emb(cemb) # [T, B, C * F/4]
emb = e3.permute(0, 2, 3, 1).flatten(2) # [B, T, C * F/4]
emb = self.combine(emb, cemb)
emb, _ = self.emb_gru(emb) # [B, T, -1]
lsnr = self.lsnr_fc(emb) * self.lsnr_scale + self.lsnr_offset
return e0, e1, e2, e3, emb, c0, lsnr
class ErbDecoder(nn.Module):
def __init__(self):
super().__init__()
p = ModelParams()
assert p.nb_erb % 8 == 0, "erb_bins should be divisible by 8"
self.emb_out_dim = p.emb_hidden_dim
if p.gru_type == "grouped":
self.emb_gru = GroupedGRU(
p.conv_ch * p.nb_erb // 4, # For compat
self.emb_out_dim,
num_layers=p.emb_num_layers - 1,
batch_first=True,
groups=p.gru_groups,
shuffle=p.group_shuffle,
add_outputs=True,
)
# SqueezedGRU uses GroupedLinearEinsum, so let's use it here as well
fc_emb = GroupedLinear(
p.emb_hidden_dim,
p.conv_ch * p.nb_erb // 4,
groups=p.lin_groups,
shuffle=p.group_shuffle,
)
self.fc_emb = nn.Sequential(fc_emb, nn.ReLU(inplace=True))
else:
self.emb_gru = SqueezedGRU(
self.emb_out_dim,
self.emb_out_dim,
output_size=p.conv_ch * p.nb_erb // 4,
num_layers=p.emb_num_layers - 1,
batch_first=True,
gru_skip_op=nn.Identity,
linear_groups=p.lin_groups,
linear_act_layer=partial(nn.ReLU, inplace=True),
)
self.fc_emb = nn.Identity()
tconv_layer = partial(
ConvTranspose2dNormAct,
kernel_size=p.conv_kernel,
bias=False,
separable=True,
)
conv_layer = partial(
Conv2dNormAct,
bias=False,
separable=True,
)
# convt: TransposedConvolution, convp: Pathway (encoder to decoder) convolutions
self.conv3p = conv_layer(p.conv_ch, p.conv_ch, kernel_size=1)
self.convt3 = conv_layer(p.conv_ch, p.conv_ch, kernel_size=p.conv_kernel)
self.conv2p = conv_layer(p.conv_ch, p.conv_ch, kernel_size=1)
self.convt2 = tconv_layer(p.conv_ch, p.conv_ch, fstride=2)
self.conv1p = conv_layer(p.conv_ch, p.conv_ch, kernel_size=1)
self.convt1 = tconv_layer(p.conv_ch, p.conv_ch, fstride=2)
self.conv0p = conv_layer(p.conv_ch, p.conv_ch, kernel_size=1)
self.conv0_out = conv_layer(
p.conv_ch, 1, kernel_size=p.conv_kernel, activation_layer=nn.Sigmoid
)
def forward(self, emb, e3, e2, e1, e0) -> Tensor:
# Estimates erb mask
b, _, t, f8 = e3.shape
emb, _ = self.emb_gru(emb)
emb = self.fc_emb(emb)
emb = emb.view(b, t, f8, -1).permute(0, 3, 1, 2) # [B, C*8, T, F/8]
e3 = self.convt3(self.conv3p(e3) + emb) # [B, C*4, T, F/4]
e2 = self.convt2(self.conv2p(e2) + e3) # [B, C*2, T, F/2]
e1 = self.convt1(self.conv1p(e1) + e2) # [B, C, T, F]
m = self.conv0_out(self.conv0p(e0) + e1) # [B, 1, T, F]
return m
class DfOutputReshapeMF(nn.Module):
"""Coefficients output reshape for multiframe/MultiFrameModule
Requires input of shape B, C, T, F, 2.
"""
def __init__(self, df_order: int, df_bins: int):
super().__init__()
self.df_order = df_order
self.df_bins = df_bins
def forward(self, coefs: Tensor) -> Tensor:
# [B, T, F, O*2] -> [B, O, T, F, 2]
coefs = coefs.view(*coefs.shape[:-1], -1, 2)
coefs = coefs.permute(0, 3, 1, 2, 4)
return coefs
class DfDecoder(nn.Module):
def __init__(self, out_channels: int = -1):
super().__init__()
p = ModelParams()
layer_width = p.conv_ch
self.emb_dim = p.emb_hidden_dim
self.df_n_hidden = p.df_hidden_dim
self.df_n_layers = p.df_num_layers
self.df_order = p.df_order
self.df_bins = p.nb_df
self.gru_groups = p.gru_groups
self.df_out_ch = out_channels if out_channels > 0 else p.df_order * 2
conv_layer = partial(Conv2dNormAct, separable=True, bias=False)
kt = p.df_pathway_kernel_size_t
self.df_convp = conv_layer(layer_width, self.df_out_ch, fstride=1, kernel_size=(kt, 1))
if p.gru_type == "grouped":
self.df_gru = GroupedGRU(
p.emb_hidden_dim,
p.df_hidden_dim,
num_layers=self.df_n_layers,
batch_first=True,
groups=p.gru_groups,
shuffle=p.group_shuffle,
add_outputs=True,
)
else:
self.df_gru = SqueezedGRU(
p.emb_hidden_dim,
p.df_hidden_dim,
num_layers=self.df_n_layers,
batch_first=True,
gru_skip_op=nn.Identity,
linear_act_layer=partial(nn.ReLU, inplace=True),
)
p.df_gru_skip = p.df_gru_skip.lower()
assert p.df_gru_skip in ("none", "identity", "groupedlinear")
self.df_skip: Optional[nn.Module]
if p.df_gru_skip == "none":
self.df_skip = None
elif p.df_gru_skip == "identity":
assert p.emb_hidden_dim == p.df_hidden_dim, "Dimensions do not match"
self.df_skip = nn.Identity()
elif p.df_gru_skip == "groupedlinear":
self.df_skip = GroupedLinearEinsum(
p.emb_hidden_dim, p.df_hidden_dim, groups=p.lin_groups
)
else:
raise NotImplementedError()
assert p.df_output_layer in ("linear", "groupedlinear")
self.df_out: nn.Module
out_dim = self.df_bins * self.df_out_ch
if p.df_output_layer == "linear":
df_out = nn.Linear(self.df_n_hidden, out_dim)
elif p.df_output_layer == "groupedlinear":
df_out = GroupedLinearEinsum(self.df_n_hidden, out_dim, groups=p.lin_groups)
else:
raise NotImplementedError
self.df_out = nn.Sequential(df_out, nn.Tanh())
self.df_fc_a = nn.Sequential(nn.Linear(self.df_n_hidden, 1), nn.Sigmoid())
self.out_transform = DfOutputReshapeMF(self.df_order, self.df_bins)
def forward(self, emb: Tensor, c0: Tensor) -> Tuple[Tensor, Tensor]:
b, t, _ = emb.shape
c, _ = self.df_gru(emb) # [B, T, H], H: df_n_hidden
if self.df_skip is not None:
c += self.df_skip(emb)
c0 = self.df_convp(c0).permute(0, 2, 3, 1) # [B, T, F, O*2], channels_last
alpha = self.df_fc_a(c) # [B, T, 1]
c = self.df_out(c) # [B, T, F*O*2], O: df_order
c = c.view(b, t, self.df_bins, self.df_out_ch) + c0 # [B, T, F, O*2]
c = self.out_transform(c)
return c, alpha
class DfNet(nn.Module):
run_df: Final[bool]
pad_specf: Final[bool]
def __init__(
self,
erb_fb: Tensor,
erb_inv_fb: Tensor,
run_df: bool = True,
train_mask: bool = True,
):
super().__init__()
p = ModelParams()
layer_width = p.conv_ch
assert p.nb_erb % 8 == 0, "erb_bins should be divisible by 8"
self.df_lookahead = p.df_lookahead if p.pad_mode == "model" else 0
self.nb_df = p.nb_df
self.freq_bins: int = p.fft_size // 2 + 1
self.emb_dim: int = layer_width * p.nb_erb
self.erb_bins: int = p.nb_erb
if p.conv_lookahead > 0 and p.pad_mode.startswith("input"):
self.pad_feat = nn.ConstantPad2d((0, 0, -p.conv_lookahead, p.conv_lookahead), 0.0)
else:
self.pad_feat = nn.Identity()
self.pad_specf = p.pad_mode.endswith("specf")
if p.df_lookahead > 0 and self.pad_specf:
self.pad_spec = nn.ConstantPad3d((0, 0, 0, 0, -p.df_lookahead, p.df_lookahead), 0.0)
else:
self.pad_spec = nn.Identity()
if (p.conv_lookahead > 0 or p.df_lookahead > 0) and p.pad_mode.startswith("output"):
assert p.conv_lookahead == p.df_lookahead
pad = (0, 0, 0, 0, -p.conv_lookahead, p.conv_lookahead)
self.pad_out = nn.ConstantPad3d(pad, 0.0)
else:
self.pad_out = nn.Identity()
self.register_buffer("erb_fb", erb_fb)
self.enc = Encoder()
self.erb_dec = ErbDecoder()
self.mask = Mask(erb_inv_fb, post_filter=p.mask_pf)
self.df_order = p.df_order
self.df_bins = p.nb_df
self.df_op: Union[DfOp, MultiFrameModule]
if p.dfop_method == "real_unfold":
raise ValueError("RealUnfold DF OP is now unsupported.")
assert p.df_output_layer != "linear", "Must be used with `groupedlinear`"
self.df_op = MF_METHODS[p.dfop_method](
num_freqs=p.nb_df, frame_size=p.df_order, lookahead=self.df_lookahead
)
n_ch_out = self.df_op.num_channels()
self.df_dec = DfDecoder(out_channels=n_ch_out)
self.run_df = run_df
if not run_df:
logger.warning("Runing without DF")
self.train_mask = train_mask
assert p.df_n_iter == 1
def forward(
self,
spec: Tensor,
feat_erb: Tensor,
feat_spec: Tensor, # Not used, take spec modified by mask instead
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""Forward method of DeepFilterNet2.
Args:
spec (Tensor): Spectrum of shape [B, 1, T, F, 2]
feat_erb (Tensor): ERB features of shape [B, 1, T, E]
feat_spec (Tensor): Complex spectrogram features of shape [B, 1, T, F']
Returns:
spec (Tensor): Enhanced spectrum of shape [B, 1, T, F, 2]
m (Tensor): ERB mask estimate of shape [B, 1, T, E]
lsnr (Tensor): Local SNR estimate of shape [B, T, 1]
"""
feat_spec = feat_spec.squeeze(1).permute(0, 3, 1, 2)
feat_erb = self.pad_feat(feat_erb)
feat_spec = self.pad_feat(feat_spec)
e0, e1, e2, e3, emb, c0, lsnr = self.enc(feat_erb, feat_spec)
m = self.erb_dec(emb, e3, e2, e1, e0)
m = self.pad_out(m.unsqueeze(-1)).squeeze(-1)
spec = self.mask(spec, m)
if self.run_df:
df_coefs, df_alpha = self.df_dec(emb, c0)
df_coefs = self.pad_out(df_coefs)
if self.pad_specf:
# Only pad the lower part of the spectrum.
spec_f = self.pad_spec(spec)
spec_f = self.df_op(spec_f, df_coefs)
spec[..., : self.nb_df, :] = spec_f[..., : self.nb_df, :]
else:
spec = self.pad_spec(spec)
spec = self.df_op(spec, df_coefs)
else:
df_alpha = torch.zeros(())
return spec, m, lsnr, df_alpha