Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf) | |
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Based on fairseq code bases | |
# https://github.com/pytorch/fairseq | |
# -------------------------------------------------------- | |
import math | |
import warnings | |
from typing import Dict, Optional, Tuple | |
import torch | |
from torch import Tensor, nn | |
from torch.nn import Parameter | |
import torch.nn.functional as F | |
class TransposeLast(nn.Module): | |
def __init__(self, deconstruct_idx=None): | |
super().__init__() | |
self.deconstruct_idx = deconstruct_idx | |
def forward(self, x): | |
if self.deconstruct_idx is not None: | |
x = x[self.deconstruct_idx] | |
return x.transpose(-2, -1) | |
class Fp32LayerNorm(nn.LayerNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, input): | |
output = F.layer_norm( | |
input.float(), | |
self.normalized_shape, | |
self.weight.float() if self.weight is not None else None, | |
self.bias.float() if self.bias is not None else None, | |
self.eps, | |
) | |
return output.type_as(input) | |
class Fp32GroupNorm(nn.GroupNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, input): | |
output = F.group_norm( | |
input.float(), | |
self.num_groups, | |
self.weight.float() if self.weight is not None else None, | |
self.bias.float() if self.bias is not None else None, | |
self.eps, | |
) | |
return output.type_as(input) | |
class GradMultiply(torch.autograd.Function): | |
def forward(ctx, x, scale): | |
ctx.scale = scale | |
res = x.new(x) | |
return res | |
def backward(ctx, grad): | |
return grad * ctx.scale, None | |
class SamePad(nn.Module): | |
def __init__(self, kernel_size, causal=False): | |
super().__init__() | |
if causal: | |
self.remove = kernel_size - 1 | |
else: | |
self.remove = 1 if kernel_size % 2 == 0 else 0 | |
def forward(self, x): | |
if self.remove > 0: | |
x = x[:, :, : -self.remove] | |
return x | |
class Swish(nn.Module): | |
"""Swish function | |
""" | |
def __init__(self): | |
"""Construct an MultiHeadedAttention object.""" | |
super(Swish, self).__init__() | |
self.act = torch.nn.Sigmoid() | |
def forward(self, x): | |
return x * self.act(x) | |
class GLU_Linear(nn.Module): | |
def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True): | |
super(GLU_Linear, self).__init__() | |
self.glu_type = glu_type | |
self.output_dim = output_dim | |
if glu_type == "sigmoid": | |
self.glu_act = torch.nn.Sigmoid() | |
elif glu_type == "swish": | |
self.glu_act = Swish() | |
elif glu_type == "relu": | |
self.glu_act = torch.nn.ReLU() | |
elif glu_type == "gelu": | |
self.glu_act = torch.nn.GELU() | |
if bias_in_glu: | |
self.linear = nn.Linear(input_dim, output_dim * 2, True) | |
else: | |
self.linear = nn.Linear(input_dim, output_dim * 2, False) | |
def forward(self, x): | |
# to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case | |
x = self.linear(x) | |
if self.glu_type == "bilinear": | |
x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2]) | |
else: | |
x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2])) | |
return x | |
def gelu_accurate(x): | |
if not hasattr(gelu_accurate, "_a"): | |
gelu_accurate._a = math.sqrt(2 / math.pi) | |
return ( | |
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) | |
) | |
def gelu(x: torch.Tensor) -> torch.Tensor: | |
return torch.nn.functional.gelu(x.float()).type_as(x) | |
def get_activation_fn(activation: str): | |
"""Returns the activation function corresponding to `activation`""" | |
if activation == "relu": | |
return F.relu | |
elif activation == "gelu": | |
return gelu | |
elif activation == "gelu_fast": | |
warnings.warn( | |
"--activation-fn=gelu_fast has been renamed to gelu_accurate" | |
) | |
return gelu_accurate | |
elif activation == "gelu_accurate": | |
return gelu_accurate | |
elif activation == "tanh": | |
return torch.tanh | |
elif activation == "linear": | |
return lambda x: x | |
elif activation == "glu": | |
return lambda x: x | |
else: | |
raise RuntimeError("--activation-fn {} not supported".format(activation)) | |
def init_bert_params(module): | |
""" | |
Initialize the weights specific to the BERT Model. | |
This overrides the default initializations depending on the specified arguments. | |
1. If normal_init_linear_weights is set then weights of linear | |
layer will be initialized using the normal distribution and | |
bais will be set to the specified value. | |
2. If normal_init_embed_weights is set then weights of embedding | |
layer will be initialized using the normal distribution. | |
3. If normal_init_proj_weights is set then weights of | |
in_project_weight for MultiHeadAttention initialized using | |
the normal distribution (to be validated). | |
""" | |
def normal_(data): | |
# with FSDP, module params will be on CUDA, so we cast them back to CPU | |
# so that the RNG is consistent with and without FSDP | |
data.copy_( | |
data.cpu().normal_(mean=0.0, std=0.02).to(data.device) | |
) | |
if isinstance(module, nn.Linear): | |
normal_(module.weight.data) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
if isinstance(module, nn.Embedding): | |
normal_(module.weight.data) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
if isinstance(module, MultiheadAttention): | |
normal_(module.q_proj.weight.data) | |
normal_(module.k_proj.weight.data) | |
normal_(module.v_proj.weight.data) | |
def quant_noise(module, p, block_size): | |
""" | |
Wraps modules and applies quantization noise to the weights for | |
subsequent quantization with Iterative Product Quantization as | |
described in "Training with Quantization Noise for Extreme Model Compression" | |
Args: | |
- module: nn.Module | |
- p: amount of Quantization Noise | |
- block_size: size of the blocks for subsequent quantization with iPQ | |
Remarks: | |
- Module weights must have the right sizes wrt the block size | |
- Only Linear, Embedding and Conv2d modules are supported for the moment | |
- For more detail on how to quantize by blocks with convolutional weights, | |
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" | |
- We implement the simplest form of noise here as stated in the paper | |
which consists in randomly dropping blocks | |
""" | |
# if no quantization noise, don't register hook | |
if p <= 0: | |
return module | |
# supported modules | |
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) | |
# test whether module.weight has the right sizes wrt block_size | |
is_conv = module.weight.ndim == 4 | |
# 2D matrix | |
if not is_conv: | |
assert ( | |
module.weight.size(1) % block_size == 0 | |
), "Input features must be a multiple of block sizes" | |
# 4D matrix | |
else: | |
# 1x1 convolutions | |
if module.kernel_size == (1, 1): | |
assert ( | |
module.in_channels % block_size == 0 | |
), "Input channels must be a multiple of block sizes" | |
# regular convolutions | |
else: | |
k = module.kernel_size[0] * module.kernel_size[1] | |
assert k % block_size == 0, "Kernel size must be a multiple of block size" | |
def _forward_pre_hook(mod, input): | |
# no noise for evaluation | |
if mod.training: | |
if not is_conv: | |
# gather weight and sizes | |
weight = mod.weight | |
in_features = weight.size(1) | |
out_features = weight.size(0) | |
# split weight matrix into blocks and randomly drop selected blocks | |
mask = torch.zeros( | |
in_features // block_size * out_features, device=weight.device | |
) | |
mask.bernoulli_(p) | |
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) | |
else: | |
# gather weight and sizes | |
weight = mod.weight | |
in_channels = mod.in_channels | |
out_channels = mod.out_channels | |
# split weight matrix into blocks and randomly drop selected blocks | |
if mod.kernel_size == (1, 1): | |
mask = torch.zeros( | |
int(in_channels // block_size * out_channels), | |
device=weight.device, | |
) | |
mask.bernoulli_(p) | |
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) | |
else: | |
mask = torch.zeros( | |
weight.size(0), weight.size(1), device=weight.device | |
) | |
mask.bernoulli_(p) | |
mask = ( | |
mask.unsqueeze(2) | |
.unsqueeze(3) | |
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) | |
) | |
# scale weights and apply mask | |
mask = mask.to( | |
torch.bool | |
) # x.bool() is not currently supported in TorchScript | |
s = 1 / (1 - p) | |
mod.weight.data = s * weight.masked_fill(mask, 0) | |
module.register_forward_pre_hook(_forward_pre_hook) | |
return module | |
class MultiheadAttention(nn.Module): | |
"""Multi-headed attention. | |
See "Attention Is All You Need" for more details. | |
""" | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
kdim=None, | |
vdim=None, | |
dropout=0.0, | |
bias=True, | |
add_bias_kv=False, | |
add_zero_attn=False, | |
self_attention=False, | |
encoder_decoder_attention=False, | |
q_noise=0.0, | |
qn_block_size=8, | |
has_relative_attention_bias=False, | |
num_buckets=32, | |
max_distance=128, | |
gru_rel_pos=False, | |
rescale_init=False, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.kdim = kdim if kdim is not None else embed_dim | |
self.vdim = vdim if vdim is not None else embed_dim | |
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
self.num_heads = num_heads | |
self.dropout_module = nn.Dropout(dropout) | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads) | |
self.head_dim = embed_dim // num_heads | |
self.q_head_dim = self.head_dim | |
self.k_head_dim = self.head_dim | |
assert ( | |
self.head_dim * num_heads == self.embed_dim | |
), "embed_dim must be divisible by num_heads" | |
self.scaling = self.head_dim ** -0.5 | |
self.self_attention = self_attention | |
self.encoder_decoder_attention = encoder_decoder_attention | |
assert not self.self_attention or self.qkv_same_dim, ( | |
"Self-attention requires query, key and " "value to be of the same size" | |
) | |
k_bias = True | |
if rescale_init: | |
k_bias = False | |
k_embed_dim = embed_dim | |
q_embed_dim = embed_dim | |
self.k_proj = quant_noise( | |
nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size | |
) | |
self.v_proj = quant_noise( | |
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size | |
) | |
self.q_proj = quant_noise( | |
nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size | |
) | |
self.out_proj = quant_noise( | |
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size | |
) | |
if add_bias_kv: | |
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) | |
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) | |
else: | |
self.bias_k = self.bias_v = None | |
self.add_zero_attn = add_zero_attn | |
self.gru_rel_pos = gru_rel_pos | |
if self.gru_rel_pos: | |
self.grep_linear = nn.Linear(self.q_head_dim, 8) | |
self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
if self.qkv_same_dim: | |
# Empirically observed the convergence to be much better with | |
# the scaled initialization | |
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) | |
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) | |
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) | |
else: | |
nn.init.xavier_uniform_(self.k_proj.weight) | |
nn.init.xavier_uniform_(self.v_proj.weight) | |
nn.init.xavier_uniform_(self.q_proj.weight) | |
nn.init.xavier_uniform_(self.out_proj.weight) | |
if self.out_proj.bias is not None: | |
nn.init.constant_(self.out_proj.bias, 0.0) | |
if self.bias_k is not None: | |
nn.init.xavier_normal_(self.bias_k) | |
if self.bias_v is not None: | |
nn.init.xavier_normal_(self.bias_v) | |
if self.has_relative_attention_bias: | |
nn.init.xavier_normal_(self.relative_attention_bias.weight) | |
def _relative_positions_bucket(self, relative_positions, bidirectional=True): | |
num_buckets = self.num_buckets | |
max_distance = self.max_distance | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets = num_buckets // 2 | |
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets | |
relative_positions = torch.abs(relative_positions) | |
else: | |
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions)) | |
max_exact = num_buckets // 2 | |
is_small = relative_positions < max_exact | |
relative_postion_if_large = max_exact + ( | |
torch.log(relative_positions.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_postion_if_large = torch.min( | |
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large) | |
return relative_buckets | |
def compute_bias(self, query_length, key_length): | |
context_position = torch.arange(query_length, dtype=torch.long)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long)[None, :] | |
relative_position = memory_position - context_position | |
relative_position_bucket = self._relative_positions_bucket( | |
relative_position, | |
bidirectional=True | |
) | |
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device) | |
values = self.relative_attention_bias(relative_position_bucket) | |
values = values.permute([2, 0, 1]) | |
return values | |
def forward( | |
self, | |
query, | |
key: Optional[Tensor], | |
value: Optional[Tensor], | |
key_padding_mask: Optional[Tensor] = None, | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
need_weights: bool = True, | |
static_kv: bool = False, | |
attn_mask: Optional[Tensor] = None, | |
before_softmax: bool = False, | |
need_head_weights: bool = False, | |
position_bias: Optional[Tensor] = None | |
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: | |
"""Input shape: Time x Batch x Channel | |
Args: | |
key_padding_mask (ByteTensor, optional): mask to exclude | |
keys that are pads, of shape `(batch, src_len)`, where | |
padding elements are indicated by 1s. | |
need_weights (bool, optional): return the attention weights, | |
averaged over heads (default: False). | |
attn_mask (ByteTensor, optional): typically used to | |
implement causal attention, where the mask prevents the | |
attention from looking forward in time (default: None). | |
before_softmax (bool, optional): return the raw attention | |
weights and values before the attention softmax. | |
need_head_weights (bool, optional): return the attention | |
weights for each head. Implies *need_weights*. Default: | |
return the average attention weights over all heads. | |
""" | |
if need_head_weights: | |
need_weights = True | |
is_tpu = query.device.type == "xla" | |
tgt_len, bsz, embed_dim = query.size() | |
src_len = tgt_len | |
assert embed_dim == self.embed_dim | |
assert list(query.size()) == [tgt_len, bsz, embed_dim] | |
if key is not None: | |
src_len, key_bsz, _ = key.size() | |
if not torch.jit.is_scripting(): | |
assert key_bsz == bsz | |
assert value is not None | |
assert src_len, bsz == value.shape[:2] | |
if self.has_relative_attention_bias and position_bias is None: | |
position_bias = self.compute_bias(tgt_len, src_len) | |
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len) | |
if ( | |
not is_tpu # don't use PyTorch version on TPUs | |
and incremental_state is None | |
and not static_kv | |
# A workaround for quantization to work. Otherwise JIT compilation | |
# treats bias in linear module as method. | |
and not torch.jit.is_scripting() | |
and self.q_head_dim == self.head_dim | |
): | |
assert key is not None and value is not None | |
assert attn_mask is None | |
attn_mask_rel_pos = None | |
if position_bias is not None: | |
attn_mask_rel_pos = position_bias | |
if self.gru_rel_pos: | |
query_layer = query.transpose(0, 1) | |
new_x_shape = query_layer.size()[:-1] + (self.num_heads, -1) | |
query_layer = query_layer.view(*new_x_shape) | |
query_layer = query_layer.permute(0, 2, 1, 3) | |
_B, _H, _L, __ = query_layer.size() | |
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view( | |
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1) | |
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 | |
attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias | |
attn_mask_rel_pos = attn_mask_rel_pos.view((-1, tgt_len, tgt_len)) | |
k_proj_bias = self.k_proj.bias | |
if k_proj_bias is None: | |
k_proj_bias = torch.zeros_like(self.q_proj.bias) | |
x, attn = F.multi_head_attention_forward( | |
query, | |
key, | |
value, | |
self.embed_dim, | |
self.num_heads, | |
torch.empty([0]), | |
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), | |
self.bias_k, | |
self.bias_v, | |
self.add_zero_attn, | |
self.dropout_module.p, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
self.training, | |
# self.training or self.dropout_module.apply_during_inference, | |
key_padding_mask, | |
need_weights, | |
attn_mask_rel_pos, | |
use_separate_proj_weight=True, | |
q_proj_weight=self.q_proj.weight, | |
k_proj_weight=self.k_proj.weight, | |
v_proj_weight=self.v_proj.weight, | |
) | |
return x, attn, position_bias | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if saved_state is not None and "prev_key" in saved_state: | |
# previous time steps are cached - no need to recompute | |
# key and value if they are static | |
if static_kv: | |
assert self.encoder_decoder_attention and not self.self_attention | |
key = value = None | |
else: | |
saved_state = None | |
if self.self_attention: | |
q = self.q_proj(query) | |
k = self.k_proj(query) | |
v = self.v_proj(query) | |
elif self.encoder_decoder_attention: | |
# encoder-decoder attention | |
q = self.q_proj(query) | |
if key is None: | |
assert value is None | |
k = v = None | |
else: | |
k = self.k_proj(key) | |
v = self.v_proj(key) | |
else: | |
assert key is not None and value is not None | |
q = self.q_proj(query) | |
k = self.k_proj(key) | |
v = self.v_proj(value) | |
q *= self.scaling | |
if self.bias_k is not None: | |
assert self.bias_v is not None | |
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) | |
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) | |
if attn_mask is not None: | |
attn_mask = torch.cat( | |
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 | |
) | |
if key_padding_mask is not None: | |
key_padding_mask = torch.cat( | |
[ | |
key_padding_mask, | |
key_padding_mask.new_zeros(key_padding_mask.size(0), 1), | |
], | |
dim=1, | |
) | |
q = ( | |
q.contiguous() | |
.view(tgt_len, bsz * self.num_heads, self.q_head_dim) | |
.transpose(0, 1) | |
) | |
if k is not None: | |
k = ( | |
k.contiguous() | |
.view(-1, bsz * self.num_heads, self.k_head_dim) | |
.transpose(0, 1) | |
) | |
if v is not None: | |
v = ( | |
v.contiguous() | |
.view(-1, bsz * self.num_heads, self.head_dim) | |
.transpose(0, 1) | |
) | |
if saved_state is not None: | |
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim) | |
if "prev_key" in saved_state: | |
_prev_key = saved_state["prev_key"] | |
assert _prev_key is not None | |
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) | |
if static_kv: | |
k = prev_key | |
else: | |
assert k is not None | |
k = torch.cat([prev_key, k], dim=1) | |
src_len = k.size(1) | |
if "prev_value" in saved_state: | |
_prev_value = saved_state["prev_value"] | |
assert _prev_value is not None | |
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) | |
if static_kv: | |
v = prev_value | |
else: | |
assert v is not None | |
v = torch.cat([prev_value, v], dim=1) | |
prev_key_padding_mask: Optional[Tensor] = None | |
if "prev_key_padding_mask" in saved_state: | |
prev_key_padding_mask = saved_state["prev_key_padding_mask"] | |
assert k is not None and v is not None | |
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( | |
key_padding_mask=key_padding_mask, | |
prev_key_padding_mask=prev_key_padding_mask, | |
batch_size=bsz, | |
src_len=k.size(1), | |
static_kv=static_kv, | |
) | |
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) | |
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) | |
saved_state["prev_key_padding_mask"] = key_padding_mask | |
# In this branch incremental_state is never None | |
assert incremental_state is not None | |
incremental_state = self._set_input_buffer(incremental_state, saved_state) | |
assert k is not None | |
assert k.size(1) == src_len | |
# This is part of a workaround to get around fork/join parallelism | |
# not supporting Optional types. | |
if key_padding_mask is not None and key_padding_mask.dim() == 0: | |
key_padding_mask = None | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bsz | |
assert key_padding_mask.size(1) == src_len | |
if self.add_zero_attn: | |
assert v is not None | |
src_len += 1 | |
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) | |
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) | |
if attn_mask is not None: | |
attn_mask = torch.cat( | |
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 | |
) | |
if key_padding_mask is not None: | |
key_padding_mask = torch.cat( | |
[ | |
key_padding_mask, | |
torch.zeros(key_padding_mask.size(0), 1).type_as( | |
key_padding_mask | |
), | |
], | |
dim=1, | |
) | |
attn_weights = torch.bmm(q, k.transpose(1, 2)) | |
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) | |
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] | |
if attn_mask is not None: | |
attn_mask = attn_mask.unsqueeze(0) | |
attn_weights += attn_mask | |
if key_padding_mask is not None: | |
# don't attend to padding symbols | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
if not is_tpu: | |
attn_weights = attn_weights.masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), | |
float("-inf"), | |
) | |
else: | |
attn_weights = attn_weights.transpose(0, 2) | |
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) | |
attn_weights = attn_weights.transpose(0, 2) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if before_softmax: | |
return attn_weights, v, position_bias | |
if position_bias is not None: | |
if self.gru_rel_pos == 1: | |
query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) | |
_B, _H, _L, __ = query_layer.size() | |
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view( | |
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1) | |
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 | |
position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias | |
position_bias = position_bias.view(attn_weights.size()) | |
attn_weights = attn_weights + position_bias | |
attn_weights_float = F.softmax( | |
attn_weights, dim=-1 | |
) | |
attn_weights = attn_weights_float.type_as(attn_weights) | |
attn_probs = self.dropout_module(attn_weights) | |
assert v is not None | |
attn = torch.bmm(attn_probs, v) | |
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] | |
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
attn = self.out_proj(attn) | |
attn_weights: Optional[Tensor] = None | |
if need_weights: | |
attn_weights = attn_weights_float.view( | |
bsz, self.num_heads, tgt_len, src_len | |
).transpose(1, 0) | |
if not need_head_weights: | |
# average attention weights over heads | |
attn_weights = attn_weights.mean(dim=0) | |
return attn, attn_weights, position_bias | |
def _append_prev_key_padding_mask( | |
key_padding_mask: Optional[Tensor], | |
prev_key_padding_mask: Optional[Tensor], | |
batch_size: int, | |
src_len: int, | |
static_kv: bool, | |
) -> Optional[Tensor]: | |
# saved key padding masks have shape (bsz, seq_len) | |
if prev_key_padding_mask is not None and static_kv: | |
new_key_padding_mask = prev_key_padding_mask | |
elif prev_key_padding_mask is not None and key_padding_mask is not None: | |
new_key_padding_mask = torch.cat( | |
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 | |
) | |
# During incremental decoding, as the padding token enters and | |
# leaves the frame, there will be a time when prev or current | |
# is None | |
elif prev_key_padding_mask is not None: | |
if src_len > prev_key_padding_mask.size(1): | |
filler = torch.zeros( | |
(batch_size, src_len - prev_key_padding_mask.size(1)), | |
device=prev_key_padding_mask.device, | |
) | |
new_key_padding_mask = torch.cat( | |
[prev_key_padding_mask.float(), filler.float()], dim=1 | |
) | |
else: | |
new_key_padding_mask = prev_key_padding_mask.float() | |
elif key_padding_mask is not None: | |
if src_len > key_padding_mask.size(1): | |
filler = torch.zeros( | |
(batch_size, src_len - key_padding_mask.size(1)), | |
device=key_padding_mask.device, | |
) | |
new_key_padding_mask = torch.cat( | |
[filler.float(), key_padding_mask.float()], dim=1 | |
) | |
else: | |
new_key_padding_mask = key_padding_mask.float() | |
else: | |
new_key_padding_mask = prev_key_padding_mask | |
return new_key_padding_mask | |
def _get_input_buffer( | |
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] | |
) -> Dict[str, Optional[Tensor]]: | |
result = self.get_incremental_state(incremental_state, "attn_state") | |
if result is not None: | |
return result | |
else: | |
empty_result: Dict[str, Optional[Tensor]] = {} | |
return empty_result | |
def _set_input_buffer( | |
self, | |
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], | |
buffer: Dict[str, Optional[Tensor]], | |
): | |
return self.set_incremental_state(incremental_state, "attn_state", buffer) | |
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): | |
return attn_weights |