Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from transformers import ( | |
BitsAndBytesConfig, | |
pipeline | |
) | |
import streamlit as st | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFacePipeline | |
from transformers import BitsAndBytesConfig | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.prompts import PromptTemplate | |
from langchain.schema.runnable import RunnablePassthrough | |
from langchain.chains import LLMChain | |
import transformers | |
from ctransformers import AutoModelForCausalLM, AutoTokenizer | |
import transformers | |
from transformers import pipeline | |
from datasets import load_dataset | |
import transformers | |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
from huggingface_hub import login | |
login(token=st.secrets["HF_TOKEN"]) | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3") | |
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3") | |
from langchain_community.document_loaders import TextLoader | |
from langchain_text_splitters import CharacterTextSplitter | |
from google.colab import drive | |
from langchain.document_loaders import PyPDFLoader, OnlinePDFLoader | |
# Montez Google Drive | |
loader = PyPDFLoader("test-1.pdf") | |
data = loader.load() | |
# split the documents into chunks | |
text_splitter1 = CharacterTextSplitter(chunk_size=512, chunk_overlap=0,separator="\n\n") | |
texts = text_splitter1.split_documents(data) | |
db = FAISS.from_documents(texts, | |
HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2')) | |
# Connect query to FAISS index using a retriever | |
retriever = db.as_retriever( | |
search_type="mmr", | |
search_kwargs={'k': 1} | |
retriever = db.as_retriever( | |
search_type="mmr", | |
search_kwargs={'k': 1} | |
) | |
from langchain.llms import HuggingFacePipeline | |
from langchain.prompts import PromptTemplate | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
text_generation_pipeline = transformers.pipeline( | |
model=model, | |
tokenizer=tokenizer, | |
task="text-generation", | |
temperature=0.02, | |
repetition_penalty=1.1, | |
return_full_text=True, | |
max_new_tokens=512, | |
) | |
prompt_template = """ | |
### [INST] | |
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH | |
Analyse carefully the context and provide a direct answer based on the context. | |
Answer in french only | |
{context} | |
Vous devez répondre aux questions en français. | |
### QUESTION: | |
{question} | |
[/INST] | |
Answer in french only | |
Vous devez répondre aux questions en français. | |
""" | |
mistral_llm = HuggingFacePipeline(pipeline=text_generation_pipeline) | |
# Create prompt from prompt template | |
prompt = PromptTemplate( | |
input_variables=["question"], | |
template=prompt_template, | |
) | |
# Create llm chain | |
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) | |
from langchain.chains import RetrievalQA | |
retriever.search_kwargs = {'k':1} | |
qa = RetrievalQA.from_chain_type( | |
llm=mistral_llm, | |
chain_type="stuff", | |
retriever=retriever, | |
chain_type_kwargs={"prompt": prompt}, | |
) | |
import streamlit as st | |
# Streamlit interface | |
st.title("Chatbot Interface") | |
# Define function to handle user input and display chatbot response | |
def chatbot_response(user_input): | |
response = qa.get_answer(user_input) | |
return response | |
# Streamlit components | |
user_input = st.text_input("You:", "") | |
submit_button = st.button("Send") | |
# Handle user input | |
if submit_button: | |
if user_input.strip() != "": | |
bot_response = chatbot_response(user_input) | |
st.text_area("Bot:", value=bot_response, height=200) | |
else: | |
st.warning("Please enter a message.") |