Spaces:
Running
Running
Add NVLM
Browse files- pages/28_NVEagle.py +2 -2
- pages/29_NVLM.py +167 -0
- pages/NVLM/image_1.png +0 -0
- pages/NVLM/image_2.png +0 -0
- pages/NVLM/image_3.png +0 -0
- pages/NVLM/image_4.png +0 -0
pages/28_NVEagle.py
CHANGED
@@ -159,7 +159,7 @@ with col2:
|
|
159 |
with col3:
|
160 |
if lang == "en":
|
161 |
if st.button("Next paper", use_container_width=True):
|
162 |
-
switch_page("
|
163 |
else:
|
164 |
if st.button("Papier suivant", use_container_width=True):
|
165 |
-
switch_page("
|
|
|
159 |
with col3:
|
160 |
if lang == "en":
|
161 |
if st.button("Next paper", use_container_width=True):
|
162 |
+
switch_page("NVLM")
|
163 |
else:
|
164 |
if st.button("Papier suivant", use_container_width=True):
|
165 |
+
switch_page("NVLM")
|
pages/29_NVLM.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_extras.switch_page_button import switch_page
|
3 |
+
|
4 |
+
|
5 |
+
translations = {
|
6 |
+
'en': {'title': 'NVLM',
|
7 |
+
'original_tweet':
|
8 |
+
"""
|
9 |
+
[Original tweet](https://x.com/mervenoyann/status/1841098941900767323) (October 1st, 2024)
|
10 |
+
""",
|
11 |
+
'tweet_1':
|
12 |
+
"""
|
13 |
+
NVIDIA just dropped a gigantic multimodal model called NVLM 72B 🦖
|
14 |
+
Explaining everything from what I got of reading the paper here 📝
|
15 |
+
""",
|
16 |
+
'tweet_2':
|
17 |
+
"""
|
18 |
+
The paper contains many ablation studies on various ways to use the LLM backbone 👇🏻
|
19 |
+
|
20 |
+
🦩 Flamingo-like cross-attention (NVLM-X)
|
21 |
+
🌋 Llava-like concatenation of image and text embeddings to a decoder-only model (NVLM-D)
|
22 |
+
✨ a hybrid architecture (NVLM-H)
|
23 |
+
""",
|
24 |
+
'tweet_3':
|
25 |
+
"""
|
26 |
+
Checking evaluations, NVLM-D and NVLM-H are best or second best compared to other models 👏
|
27 |
+
|
28 |
+
The released model is NVLM-D based on Qwen-2 Instruct, aligned with InternViT-6B using a huge mixture of different datasets
|
29 |
+
""",
|
30 |
+
'tweet_4':
|
31 |
+
"""
|
32 |
+
You can easily use this model by loading it through 🤗 Transformers' AutoModel 😍
|
33 |
+
""",
|
34 |
+
'ressources':
|
35 |
+
"""
|
36 |
+
Ressources:
|
37 |
+
[NVLM: Open Frontier-Class Multimodal LLMs](https://arxiv.org/abs/2409.11402)
|
38 |
+
by Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki, Mohammad Shoeybi, Bryan Catanzaro, Wei Ping (2024)
|
39 |
+
[GitHub](https://nvlm-project.github.io/)
|
40 |
+
[Model](https://huggingface.co/nvidia/NVLM-D-72B)
|
41 |
+
"""
|
42 |
+
},
|
43 |
+
'fr': {
|
44 |
+
'title': 'NVLM',
|
45 |
+
'original_tweet':
|
46 |
+
"""
|
47 |
+
[Tweet de base](https://x.com/mervenoyann/status/1841098941900767323) (en anglais) (1er ocotbre 2024)
|
48 |
+
""",
|
49 |
+
'tweet_1':
|
50 |
+
"""
|
51 |
+
NVIDIA vient de publier un gigantesque modèle multimodal appelé NVLM 72B 🦖
|
52 |
+
J'explique tout ce que j'ai compris suite à la lecture du papier 📝
|
53 |
+
""",
|
54 |
+
'tweet_2':
|
55 |
+
"""
|
56 |
+
L'article contient de nombreuses études d'ablation sur les différentes façons d'utiliser le backbone 👇🏻
|
57 |
+
|
58 |
+
🦩 Attention croisée de type Flamingo (NVLM-X)
|
59 |
+
🌋 concaténation de type Llava d'embeddings d'images et de textes à un décodeur (NVLM-D)
|
60 |
+
✨ une architecture hybride (NVLM-H)
|
61 |
+
""",
|
62 |
+
'tweet_3':
|
63 |
+
"""
|
64 |
+
En vérifiant les évaluations, NVLM-D et NVLM-H sont les meilleurs ou les deuxièmes par rapport aux autres modèles 👏
|
65 |
+
|
66 |
+
Le modèle publié est NVLM-D basé sur Qwen-2 Instruct, aligné avec InternViT-6B en utilisant un énorme mélange de différents jeux de données.
|
67 |
+
""",
|
68 |
+
'tweet_4':
|
69 |
+
"""
|
70 |
+
Vous pouvez facilement utiliser ce modèle en le chargeant via AutoModel de 🤗 Transformers 😍
|
71 |
+
""",
|
72 |
+
'ressources':
|
73 |
+
"""
|
74 |
+
Ressources :
|
75 |
+
[NVLM: Open Frontier-Class Multimodal LLMs](https://arxiv.org/abs/2409.11402)
|
76 |
+
de Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki, Mohammad Shoeybi, Bryan Catanzaro, Wei Ping (2024)
|
77 |
+
[GitHub](https://nvlm-project.github.io/)
|
78 |
+
[Modèle](https://huggingface.co/nvidia/NVLM-D-72B)
|
79 |
+
"""
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
|
84 |
+
def language_selector():
|
85 |
+
languages = {'EN': '🇬🇧', 'FR': '🇫🇷'}
|
86 |
+
selected_lang = st.selectbox('', options=list(languages.keys()), format_func=lambda x: languages[x], key='lang_selector')
|
87 |
+
return 'en' if selected_lang == 'EN' else 'fr'
|
88 |
+
|
89 |
+
left_column, right_column = st.columns([5, 1])
|
90 |
+
|
91 |
+
# Add a selector to the right column
|
92 |
+
with right_column:
|
93 |
+
lang = language_selector()
|
94 |
+
|
95 |
+
# Add a title to the left column
|
96 |
+
with left_column:
|
97 |
+
st.title(translations[lang]["title"])
|
98 |
+
|
99 |
+
st.success(translations[lang]["original_tweet"], icon="ℹ️")
|
100 |
+
st.markdown(""" """)
|
101 |
+
|
102 |
+
st.markdown(translations[lang]["tweet_1"], unsafe_allow_html=True)
|
103 |
+
st.markdown(""" """)
|
104 |
+
|
105 |
+
st.image("pages/NVLM/image_1.png", use_column_width=True)
|
106 |
+
st.markdown(""" """)
|
107 |
+
|
108 |
+
st.markdown(translations[lang]["tweet_2"], unsafe_allow_html=True)
|
109 |
+
st.markdown(""" """)
|
110 |
+
|
111 |
+
st.image("pages/NVLM/image_2.png", use_column_width=True)
|
112 |
+
st.markdown(""" """)
|
113 |
+
|
114 |
+
st.markdown(translations[lang]["tweet_3"], unsafe_allow_html=True)
|
115 |
+
st.markdown(""" """)
|
116 |
+
|
117 |
+
st.image("pages/NVLM/image_3.png", use_column_width=True)
|
118 |
+
st.markdown(""" """)
|
119 |
+
|
120 |
+
st.markdown(translations[lang]["tweet_4"], unsafe_allow_html=True)
|
121 |
+
st.markdown(""" """)
|
122 |
+
|
123 |
+
st.image("pages/NVLM/image_4.png", use_column_width=True)
|
124 |
+
st.markdown(""" """)
|
125 |
+
|
126 |
+
with st.expander ("Code"):
|
127 |
+
st.code("""
|
128 |
+
import torch
|
129 |
+
from transformers import AutoModel
|
130 |
+
|
131 |
+
path = "nvidia/NVLM-D-72B"
|
132 |
+
|
133 |
+
model = AutoModel.from_pretrained(
|
134 |
+
path,
|
135 |
+
torch_dtype=torch.bfloat16,
|
136 |
+
low_cpu_mem_usage=True,
|
137 |
+
use_flash_attn=False,
|
138 |
+
trust_remote_code=True).eval()
|
139 |
+
""")
|
140 |
+
|
141 |
+
st.info(translations[lang]["ressources"], icon="📚")
|
142 |
+
|
143 |
+
st.markdown(""" """)
|
144 |
+
st.markdown(""" """)
|
145 |
+
st.markdown(""" """)
|
146 |
+
col1, col2, col3= st.columns(3)
|
147 |
+
with col1:
|
148 |
+
if lang == "en":
|
149 |
+
if st.button('Previous paper', use_container_width=True):
|
150 |
+
switch_page("NVEagle")
|
151 |
+
else:
|
152 |
+
if st.button('Papier précédent', use_container_width=True):
|
153 |
+
switch_page("NVEagle")
|
154 |
+
with col2:
|
155 |
+
if lang == "en":
|
156 |
+
if st.button("Home", use_container_width=True):
|
157 |
+
switch_page("Home")
|
158 |
+
else:
|
159 |
+
if st.button("Accueil", use_container_width=True):
|
160 |
+
switch_page("Home")
|
161 |
+
with col3:
|
162 |
+
if lang == "en":
|
163 |
+
if st.button("Next paper", use_container_width=True):
|
164 |
+
switch_page("Home")
|
165 |
+
else:
|
166 |
+
if st.button("Papier suivant", use_container_width=True):
|
167 |
+
switch_page("Home")
|
pages/NVLM/image_1.png
ADDED
pages/NVLM/image_2.png
ADDED
pages/NVLM/image_3.png
ADDED
pages/NVLM/image_4.png
ADDED