Spaces:
Running
Running
import torch | |
import json | |
import numpy as np | |
from transformers import (BertForMaskedLM, BertTokenizer) | |
modelpath = 'zari-bert-cda/' | |
tokenizer = BertTokenizer.from_pretrained(modelpath) | |
model = BertForMaskedLM.from_pretrained(modelpath) | |
model.eval() | |
id_of_mask = 103 | |
def get_embeddings(sentence): | |
with torch.no_grad(): | |
processed_sentence = '' + sentence + '' | |
tokenized = tokenizer.encode(processed_sentence) | |
input_ids = torch.tensor(tokenized).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
index_of_mask = tokenized.index(id_of_mask) | |
# batch, tokens, vocab_size | |
prediction_scores = outputs[0] | |
return prediction_scores[0][index_of_mask].cpu().numpy().tolist() | |
import os | |
import shutil | |
# Free up memory | |
if os.environ.get('REMOVE_WEIGHTS') == 'TRUE': | |
print('removing zari-bert-cda from filesystem') | |
shutil.rmtree('zari-bert-cda', ignore_errors=True) | |