taskmaster / app.py
merve's picture
merve HF staff
Update app.py
5d4dfc8
raw
history blame
1.84 kB
import streamlit as st
import requests
import os
from streamlit_chat import message
import random
@st.cache
def query(payload):
api_token = os.getenv("api_token")
model_id = "deepset/roberta-base-squad2"
headers = {"Authorization": f"Bearer {api_token}"}
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
response = requests.post(API_URL, headers=headers, json=payload)
return response.json(), response
context = "To extract information from documents, use sentence similarity task. To do sentiment analysis from tweets, use text classification task. To detect masks from images, use object detection task. To extract information from invoices, use named entity recognition from token classification task."
message_history = [{"text":"Let's find out the best task for your use case! Tell me about your use case :)", "is_user":False}]
for msg in message_history:
message(msg["text"], is_user = msg["is_user"]) # display all the previous message
input = st.text_input("Ask me πŸ€—")
message_history.append({"text":input, "is_user" : True})
placeholder = st.empty() # placeholder for latest message
data, resp = query(
{
"inputs": {
"question": input,
"context": context,
}
}
)
if resp.status_code == 200:
model_answer = data["answer"]
response_templates = [f"{model_answer} is the best task for this 🀩", f"I think you should use {model_answer} πŸͺ„", f"I think {model_answer} should work for you πŸ€“"]
bot_answer = random.choice(response_templates)
message_history.append({"text":bot_answer, "is_user" : False})
with placeholder.container():
last_message = message_history[-1]
if last_message != "":
message(last_message["text"], last_message["is_user"]) # display the latest message