slimsam / app.py
merve's picture
merve HF staff
Update app.py
b4e8f1d verified
import gradio as gr
import numpy as np
import torch
from PIL import Image
from transformers import SamModel, SamProcessor
from gradio_image_prompter import ImagePrompter
import spaces
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to("cuda")
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to("cuda")
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
def get_processor_and_model(slim: bool):
if slim:
return slimsam_processor, slimsam_model
return sam_processor, sam_model
@spaces.GPU
def sam_box_inference(image, x_min, y_min, x_max, y_max, *, slim=False):
processor, model = get_processor_and_model(slim)
inputs = processor(
Image.fromarray(image),
input_boxes=[[[[x_min, y_min, x_max, y_max]]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = model(**inputs)
mask = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
mask = mask[np.newaxis, ...]
print(mask)
print(mask.shape)
return [(mask, "mask")]
@spaces.GPU
def sam_point_inference(image, x, y, *, slim=False):
processor, model = get_processor_and_model(slim)
inputs = processor(
image,
input_points=[[[x, y]]],
return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
mask = processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
mask = mask[np.newaxis, ...]
print(type(mask))
print(mask.shape)
return [(mask, "mask")]
def infer_point(img):
if img is None:
gr.Error("Please upload an image and select a point.")
if img["background"] is None:
gr.Error("Please upload an image and select a point.")
# background (original image) layers[0] ( point prompt) composite (total image)
image = img["background"].convert("RGB")
point_prompt = img["layers"][0]
total_image = img["composite"]
img_arr = np.array(point_prompt)
if not np.any(img_arr):
gr.Error("Please select a point on top of the image.")
else:
nonzero_indices = np.nonzero(img_arr)
img_arr = np.array(point_prompt)
nonzero_indices = np.nonzero(img_arr)
center_x = int(np.mean(nonzero_indices[1]))
center_y = int(np.mean(nonzero_indices[0]))
print("Point inference returned.")
return ((image, sam_point_inference(image, center_x, center_y, slim=True)),
(image, sam_point_inference(image, center_x, center_y)))
def infer_box(prompts):
# background (original image) layers[0] ( point prompt) composite (total image)
image = prompts["image"]
if image is None:
gr.Error("Please upload an image and draw a box before submitting")
points = prompts["points"][0]
if points is None:
gr.Error("Please draw a box before submitting.")
print(points)
# x_min = points[0] x_max = points[3] y_min = points[1] y_max = points[4]
return ((image, sam_box_inference(image, points[0], points[1], points[3], points[4], slim=True)),
(image, sam_box_inference(image, points[0], points[1], points[3], points[4])))
with gr.Blocks(title="SlimSAM") as demo:
gr.Markdown("# SlimSAM")
gr.Markdown("SlimSAM is the pruned-distilled version of SAM that is smaller.")
gr.Markdown("In this demo, you can compare SlimSAM and SAM outputs in point and box prompts.")
with gr.Tab("Box Prompt"):
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown("To try box prompting, simply upload and image and draw a box on it.")
with gr.Row():
with gr.Column():
im = ImagePrompter()
btn = gr.Button("Submit")
with gr.Column():
output_box_slimsam = gr.AnnotatedImage(label="SlimSAM Output")
output_box_sam = gr.AnnotatedImage(label="SAM Output")
btn.click(infer_box, inputs=im, outputs=[output_box_slimsam, output_box_sam])
with gr.Tab("Point Prompt"):
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown("To try point prompting, simply upload and image and leave a dot on it.")
with gr.Row():
with gr.Column():
im = gr.ImageEditor(
type="pil",
)
with gr.Column():
output_slimsam = gr.AnnotatedImage(label="SlimSAM Output")
output_sam = gr.AnnotatedImage(label="SAM Output")
im.change(infer_point, inputs=im, outputs=[output_slimsam, output_sam])
demo.launch(debug=True)