Spaces:
Runtime error
Runtime error
import data | |
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image, ImageDraw | |
from tqdm import tqdm | |
from models import imagebind_model | |
from models.imagebind_model import ModalityType | |
from segment_anything import build_sam, SamAutomaticMaskGenerator | |
from utils import ( | |
segment_image, | |
convert_box_xywh_to_xyxy, | |
get_indices_of_values_above_threshold, | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
""" | |
Step 1: Instantiate model | |
""" | |
# Segment Anything | |
mask_generator = SamAutomaticMaskGenerator( | |
build_sam(checkpoint=".checkpoints/sam_vit_h_4b8939.pth").to(device), | |
points_per_side=16, | |
) | |
# ImageBind | |
bind_model = imagebind_model.imagebind_huge(pretrained=True) | |
bind_model.eval() | |
bind_model.to(device) | |
""" | |
Step 2: Generate auto masks with SAM | |
""" | |
image_path = ".assets/car_image.jpg" | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
masks = mask_generator.generate(image) | |
""" | |
Step 3: Get cropped images based on mask and box | |
""" | |
cropped_boxes = [] | |
image = Image.open(image_path) | |
for mask in tqdm(masks): | |
cropped_boxes.append(segment_image(image, mask["segmentation"]).crop(convert_box_xywh_to_xyxy(mask["bbox"]))) | |
""" | |
Step 4: Run ImageBind model to get similarity between cropped image and different modalities | |
""" | |
def retriev_vision_and_text(elements, text_list): | |
inputs = { | |
ModalityType.VISION: data.load_and_transform_vision_data_from_pil_image(elements, device), | |
ModalityType.TEXT: data.load_and_transform_text(text_list, device), | |
} | |
with torch.no_grad(): | |
embeddings = bind_model(inputs) | |
vision_audio = torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=0), | |
return vision_audio # [113, 1] | |
def retriev_vision_and_audio(elements, audio_list): | |
inputs = { | |
ModalityType.VISION: data.load_and_transform_vision_data_from_pil_image(elements, device), | |
ModalityType.AUDIO: data.load_and_transform_audio_data(audio_list, device), | |
} | |
with torch.no_grad(): | |
embeddings = bind_model(inputs) | |
vision_audio = torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.AUDIO].T, dim=0), | |
return vision_audio | |
vision_audio_result = retriev_vision_and_audio(cropped_boxes, [".assets/car_audio.wav"]) | |
vision_text_result = retriev_vision_and_text(cropped_boxes, ["A car"] ) | |
""" | |
Step 5: Merge the top similarity masks to get the final mask and save the merged mask | |
This is the audio retrival result | |
""" | |
# get highest similar mask with threshold | |
# result[0] shape: [113, 1] | |
threshold = 0.025 | |
index = get_indices_of_values_above_threshold(vision_audio_result[0], threshold) | |
segmentation_masks = [] | |
for seg_idx in index: | |
segmentation_mask_image = Image.fromarray(masks[seg_idx]["segmentation"].astype('uint8') * 255) | |
segmentation_masks.append(segmentation_mask_image) | |
original_image = Image.open(image_path) | |
overlay_image = Image.new('RGBA', image.size, (0, 0, 0, 255)) | |
overlay_color = (255, 255, 255, 0) | |
draw = ImageDraw.Draw(overlay_image) | |
for segmentation_mask_image in segmentation_masks: | |
draw.bitmap((0, 0), segmentation_mask_image, fill=overlay_color) | |
# return Image.alpha_composite(original_image.convert('RGBA'), overlay_image) | |
mask_image = overlay_image.convert("RGB") | |
mask_image.save("./audio_sam_merged_mask.jpg") | |
""" | |
Image / Text mask | |
""" | |
# get highest similar mask with threshold | |
# result[0] shape: [113, 1] | |
threshold = 0.05 | |
index = get_indices_of_values_above_threshold(vision_text_result[0], threshold) | |
segmentation_masks = [] | |
for seg_idx in index: | |
segmentation_mask_image = Image.fromarray(masks[seg_idx]["segmentation"].astype('uint8') * 255) | |
segmentation_masks.append(segmentation_mask_image) | |
original_image = Image.open(image_path) | |
overlay_image = Image.new('RGBA', image.size, (0, 0, 0, 255)) | |
overlay_color = (255, 255, 255, 0) | |
draw = ImageDraw.Draw(overlay_image) | |
for segmentation_mask_image in segmentation_masks: | |
draw.bitmap((0, 0), segmentation_mask_image, fill=overlay_color) | |
# return Image.alpha_composite(original_image.convert('RGBA'), overlay_image) | |
mask_image = overlay_image.convert("RGB") | |
mask_image.save("./text_sam_merged_mask.jpg") | |