grounding_sam_inpainting / EfficientSAM /grounded_edge_sam.py
merve's picture
merve HF staff
Upload 219 files
9cc3ad8
raw
history blame
3.34 kB
import cv2
import numpy as np
import supervision as sv
import torch
import torchvision
from groundingdino.util.inference import Model
from segment_anything import SamPredictor
from EdgeSAM.setup_edge_sam import build_edge_sam
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# GroundingDINO config and checkpoint
GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swint_ogc.pth"
# Building GroundingDINO inference model
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH)
# Building MobileSAM predictor
EdgeSAM_CHECKPOINT_PATH = "./EfficientSAM/edge_sam_3x.pth"
edge_sam = build_edge_sam(checkpoint=EdgeSAM_CHECKPOINT_PATH)
edge_sam.to(device=DEVICE)
sam_predictor = SamPredictor(edge_sam)
# Predict classes and hyper-param for GroundingDINO
SOURCE_IMAGE_PATH = "./EfficientSAM/LightHQSAM/example_light_hqsam.png"
CLASSES = ["bench"]
BOX_THRESHOLD = 0.25
TEXT_THRESHOLD = 0.25
NMS_THRESHOLD = 0.8
# load image
image = cv2.imread(SOURCE_IMAGE_PATH)
# detect objects
detections = grounding_dino_model.predict_with_classes(
image=image,
classes=CLASSES,
box_threshold=BOX_THRESHOLD,
text_threshold=BOX_THRESHOLD
)
# annotate image with detections
box_annotator = sv.BoxAnnotator()
labels = [
f"{CLASSES[class_id]} {confidence:0.2f}"
for _, _, confidence, class_id, _
in detections]
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
# save the annotated grounding dino image
cv2.imwrite("EfficientSAM/LightHQSAM/groundingdino_annotated_image.jpg", annotated_frame)
# NMS post process
print(f"Before NMS: {len(detections.xyxy)} boxes")
nms_idx = torchvision.ops.nms(
torch.from_numpy(detections.xyxy),
torch.from_numpy(detections.confidence),
NMS_THRESHOLD
).numpy().tolist()
detections.xyxy = detections.xyxy[nms_idx]
detections.confidence = detections.confidence[nms_idx]
detections.class_id = detections.class_id[nms_idx]
print(f"After NMS: {len(detections.xyxy)} boxes")
# Prompting SAM with detected boxes
def segment(sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
sam_predictor.set_image(image)
result_masks = []
for box in xyxy:
masks, scores, logits = sam_predictor.predict(
box=box,
multimask_output=False,
hq_token_only=True,
)
index = np.argmax(scores)
result_masks.append(masks[index])
return np.array(result_masks)
# convert detections to masks
detections.mask = segment(
sam_predictor=sam_predictor,
image=cv2.cvtColor(image, cv2.COLOR_BGR2RGB),
xyxy=detections.xyxy
)
# annotate image with detections
box_annotator = sv.BoxAnnotator()
mask_annotator = sv.MaskAnnotator()
labels = [
f"{CLASSES[class_id]} {confidence:0.2f}"
for _, _, confidence, class_id, _
in detections]
annotated_image = mask_annotator.annotate(scene=image.copy(), detections=detections)
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections, labels=labels)
# save the annotated grounded-sam image
cv2.imwrite("EfficientSAM/grounded_edge_sam_annotated_image.jpg", annotated_image)