merve's picture
merve HF staff
Update app.py
23c17f5
raw
history blame
1.41 kB
import gradio as gr
import pandas as pd
import datasets
import seaborn as sns
import matplotlib.pyplot as plt
df = datasets.load_dataset("merve/supersoaker-failures")
df = df["train"].to_pandas()
df.dropna(axis=0, inplace=True)
df.drop(columns=["id"], inplace=True)
def plot(df):
plots = []
plt.scatter(df.measurement_13, df.measurement_15, c = df.loading,alpha=0.5)
plt.savefig("scatter.png")
plt.scatter(df.measurement_10, df.measurement_15, c = df.loading,alpha=0.5)
plt.savefig("scatter_2.png")
plt.scatter(df.measurement_14, df.measurement_15, c = df.loading,alpha=0.5)
plt.savefig("scatter_3.png")
plt.scatter(df.measurement_16, df.measurement_15, c = df.loading,alpha=0.5)
plt.savefig("scatter_4.png")
df['failure'].value_counts().plot(kind='bar')
plt.savefig("bar.png")
sns.distplot(df["loading"])
plt.savefig("loading_dist.png")
sns.distplot(df["attribute_3"])
plt.savefig("attribute_3.png")
sns.catplot(x='measurement_3', y='measurement_4', hue='failure', data=df, kind='violin')
plt.savefig("swarmplot.png")
sns.heatmap(df.select_dtypes(include="number").corr())
plt.savefig("corr.png")
plots = ["corr.png","scatter.png", "bar.png", "loading_dist.png", "attribute_3.png", "swarmplot.png"]
return plots
inputs = [gr.Dataframe()]
outputs = [gr.Gallery().style(grid=(3,3))]
gr.Interface(plot, inputs=inputs, outputs=outputs, examples=[df.head(100)]).launch()