Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,18 +6,19 @@ import faiss
|
|
6 |
import numpy as np
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from datasets import load_dataset
|
|
|
9 |
|
10 |
-
|
11 |
-
index =
|
|
|
12 |
|
13 |
-
dataset
|
|
|
|
|
14 |
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
|
15 |
-
dataset = dataset.with_format("torch", device=device)
|
16 |
-
|
17 |
processor = AutoProcessor.from_pretrained("nielsr/siglip-base-patch16-224")
|
18 |
model = SiglipModel.from_pretrained("nielsr/siglip-base-patch16-224").to(device)
|
19 |
|
20 |
-
|
21 |
def extract_features_siglip(image):
|
22 |
with torch.no_grad():
|
23 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
@@ -29,14 +30,17 @@ def infer(input_image):
|
|
29 |
input_features = input_features.detach().cpu().numpy()
|
30 |
input_features = np.float32(input_features)
|
31 |
faiss.normalize_L2(input_features)
|
32 |
-
distances, indices =
|
33 |
gallery_output = []
|
34 |
for i,v in enumerate(indices[0]):
|
35 |
sim = -distances[0][i]
|
36 |
-
|
37 |
-
|
|
|
38 |
return gallery_output
|
39 |
|
|
|
|
|
40 |
gr.Interface(infer, "sketchpad", "gallery", title="Draw to Search Art 🖼️").launch()
|
41 |
|
42 |
|
|
|
6 |
import numpy as np
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from datasets import load_dataset
|
9 |
+
import pandas as pd
|
10 |
|
11 |
+
# download model and dataset
|
12 |
+
hf_hub_download("merve/siglip-faiss-wikiart", "siglip_10k.index", local_dir="./")
|
13 |
+
hf_hub_download("merve/siglip-faiss-wikiart", "wikiart_10k.csv", local_dir="./")
|
14 |
|
15 |
+
# read index, dataset and load siglip model and processor
|
16 |
+
index = faiss.read_index("./siglip_10k.index")
|
17 |
+
df = pd.read_csv("./wikiart_10k.csv")
|
18 |
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
|
|
|
|
|
19 |
processor = AutoProcessor.from_pretrained("nielsr/siglip-base-patch16-224")
|
20 |
model = SiglipModel.from_pretrained("nielsr/siglip-base-patch16-224").to(device)
|
21 |
|
|
|
22 |
def extract_features_siglip(image):
|
23 |
with torch.no_grad():
|
24 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
|
30 |
input_features = input_features.detach().cpu().numpy()
|
31 |
input_features = np.float32(input_features)
|
32 |
faiss.normalize_L2(input_features)
|
33 |
+
distances, indices = index.search(input_features, 3)
|
34 |
gallery_output = []
|
35 |
for i,v in enumerate(indices[0]):
|
36 |
sim = -distances[0][i]
|
37 |
+
image_url = df.iloc[v]["Link"]
|
38 |
+
img_retrieved = read_image_from_url(image_url)
|
39 |
+
gallery_output.append(img_retrieved)
|
40 |
return gallery_output
|
41 |
|
42 |
+
|
43 |
+
description="This is an application where you can draw an image and find the closest artwork among 10k art from wikiart dataset."
|
44 |
gr.Interface(infer, "sketchpad", "gallery", title="Draw to Search Art 🖼️").launch()
|
45 |
|
46 |
|