|
!(async function(){ |
|
var isLock = false |
|
|
|
var csvstr = await (await fetch('rotated-accuracy.csv')).text() |
|
var allData = d3.csvParse(csvstr) |
|
.filter(d => { |
|
d.slug = [d.dataset_size, d.aVal, d.minority_percent].join(' ') |
|
|
|
d.accuracy_orig = (+d.accuracy_test_data_1 + +d.accuracy_test_data_7)/2000 |
|
d.accuracy_rot = (+d.accuracy_test_data_1_rot + +d.accuracy_test_data_7_rot)/2000 |
|
d.accuracy_dif = d.accuracy_orig - d.accuracy_rot |
|
|
|
return d.accuracy_orig > 0 && d.accuracy_rot > 0 |
|
}) |
|
|
|
var data = d3.nestBy(allData, d => d.slug) |
|
data.forEach(slug => { |
|
slug.accuracy_orig = d3.median(slug, d => d.accuracy_orig) |
|
slug.accuracy_rot = d3.median(slug, d => d.accuracy_rot) |
|
slug.accuracy_dif = slug.accuracy_orig - slug.accuracy_rot |
|
|
|
slug.dataset_size = +slug[0].dataset_size |
|
slug.aVal = +slug[0].aVal |
|
slug.minority_percent = +slug[0].minority_percent |
|
}) |
|
|
|
|
|
|
|
|
|
|
|
var byMetrics = 'dataset_size aVal minority_percent' |
|
.split(' ') |
|
.map(metricStr => { |
|
var byMetric = d3.nestBy(data, d => d[metricStr]) |
|
byMetric.forEach(d => d.key = +d.key) |
|
byMetric = _.sortBy(byMetric, d => d.key) |
|
byMetric.forEach((d, i) => { |
|
d.metricIndex = i |
|
d.forEach(e => e['metric_' + metricStr] = d) |
|
}) |
|
|
|
byMetric.forEach((d, i) => { |
|
if (metricStr == 'dataset_size') d.label = i % 2 == 0 ? '' : d3.format(',')(d.key) |
|
if (metricStr == 'aVal') d.label = '' |
|
if (metricStr == 'minority_percent') d.label = i % 2 ? '' : d3.format('.0%')(d.key) |
|
}) |
|
|
|
byMetric.active = byMetric[5] |
|
byMetric.metricStr = metricStr |
|
byMetric.label = {dataset_size: 'Training Points', aVal: 'Less Privacy', minority_percent: 'Percent Rotated In Training Data'}[metricStr] |
|
|
|
return byMetric |
|
}) |
|
|
|
|
|
|
|
!(function(){ |
|
var sel = d3.select('.rotated-accuracy-heatmap').html('') |
|
.st({width: 1100, position: 'relative', left: (850 - 1100)/2}) |
|
.at({role: 'graphics-document', 'aria-label': `Faceted MNIST models by the percent of rotated digits in training data. Heatmaps show how privacy and training data change accuracy on rotated and original digits.`}) |
|
|
|
sel.append('div.chart-title').text('Percentage of training data rotated 90° →') |
|
|
|
sel.appendMany('div', byMetrics[2]) |
|
.st({display: 'inline-block'}) |
|
.each(drawHeatmap) |
|
})() |
|
function drawHeatmap(sizeData, chartIndex){ |
|
|
|
var s = 8 |
|
var n = 11 |
|
|
|
var c = d3.conventions({ |
|
sel: d3.select(this), |
|
width: s*n, |
|
height: s*n, |
|
margin: {left: 5, right: 5, top: 30, bottom: 50}, |
|
}) |
|
|
|
c.svg.append('rect').at({width: c.width, height: c.height, fillOpacity: 0}) |
|
|
|
c.svg.append('text.chart-title') |
|
.text(d3.format('.0%')(sizeData.key)).at({dy: -4, textAnchor: 'middle', x: c.width/2}) |
|
.st({fontWeight: 300}) |
|
|
|
var linearScale = d3.scaleLinear().domain([0, .5]).clamp(1) |
|
var colorScale = d => d3.interpolatePlasma(linearScale(d)) |
|
|
|
var pad = .5 |
|
var dataSel = c.svg |
|
.on('mouseleave', () => isLock = false) |
|
.append('g').translate([.5, .5]) |
|
.appendMany('g.accuracy-rect', sizeData) |
|
.translate(d => [ |
|
s*d.metric_dataset_size.metricIndex, |
|
s*(n - d.metric_aVal.metricIndex) |
|
]) |
|
.call(d3.attachTooltip) |
|
.on('mouseover', (d, i, node, isClickOverride) => { |
|
updateTooltip(d) |
|
|
|
if (isLock && !isClickOverride) return |
|
|
|
byMetrics[0].setActiveCol(d.metric_dataset_size) |
|
byMetrics[1].setActiveCol(d.metric_aVal) |
|
byMetrics[2].setActiveCol(d.metric_minority_percent) |
|
|
|
return d |
|
}) |
|
.on('click', clickCb) |
|
.st({cursor: 'pointer'}) |
|
|
|
|
|
|
|
dataSel.append('rect') |
|
.at({ |
|
width: s - pad, |
|
height: s - pad, |
|
fillOpacity: .1 |
|
}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
sizeData.forEach(d => { |
|
d.y_orig = Math.max(0, (s - pad)*(d.accuracy_orig - .5)*2) |
|
d.y_rot = Math.max(0, (s - pad)*(d.accuracy_rot - .5)*2) |
|
}) |
|
|
|
dataSel.append('rect') |
|
.at({ |
|
height: d => d.y_orig, |
|
y: d => s - d.y_orig, |
|
width: s/2, |
|
x: s/2, |
|
fill: 'purple', |
|
}) |
|
dataSel.append('rect') |
|
.at({ |
|
height: d => d.y_rot, |
|
y: d => s - d.y_rot, |
|
width: s/2, |
|
fill: 'orange', |
|
}) |
|
|
|
sizeData.updateActiveRect = function(match){ |
|
dataSel |
|
.classed('active', d => match == d) |
|
.filter(d => match == d) |
|
.raise() |
|
} |
|
|
|
if (chartIndex == 0){ |
|
c.svg.append('g.x.axis').translate([10, c.height]) |
|
c.svg.append('g.y.axis').translate([0, 5]) |
|
|
|
util.addAxisLabel(c, 'Training Points →', 'Less Privacy →', 30, -15) |
|
} |
|
|
|
if (chartIndex == 8){ |
|
c.svg.appendMany('g.axis', ['Original Digit Accuracy', 'Rotated Digit Accuracy']) |
|
.translate((d, i) => [c.width - 230*i - 230 -50, c.height + 30]) |
|
.append('text.axis-label').text(d => d) |
|
.st({fontSize: 14}) |
|
.parent() |
|
.appendMany('rect', (d, i) => d3.range(.2, 1.2, .2).map((v, j) => ({i, v, j}))) |
|
.at({ |
|
width: s/2, |
|
y: d => s - d.v*s - s, |
|
height: d => d.v*s, |
|
fill: d => ['purple', 'orange'][d.i], |
|
x: d => d.j*s*.75 - 35 |
|
}) |
|
} |
|
} |
|
|
|
|
|
!(function(){ |
|
var sel = d3.select('.rotated-accuracy').html('') |
|
.at({role: 'graphics-document', 'aria-label': `Barbell charts showing up privacy / data / percent underrepresented data all trade-off in complex ways.`}) |
|
|
|
sel.appendMany('div', byMetrics) |
|
.st({display: 'inline-block', width: 300, marginRight: 10, marginBottom: 50, marginTop: 10}) |
|
.each(drawMetricBarbell) |
|
})() |
|
function drawMetricBarbell(byMetric, byMetricIndex){ |
|
var sel = d3.select(this) |
|
|
|
var c = d3.conventions({ |
|
sel, |
|
height: 220, |
|
width: 220, |
|
margin: {bottom: 10, top: 5}, |
|
layers: 's', |
|
}) |
|
c.svg.append('rect').at({width: c.width, height: c.height, fillOpacity: 0}) |
|
|
|
c.y.domain([.5, 1]).interpolate(d3.interpolateRound) |
|
c.x.domain([0, byMetric.length - 1]).clamp(1).interpolate(d3.interpolateRound) |
|
|
|
c.xAxis |
|
.tickValues(d3.range(byMetric.length)) |
|
.tickFormat(i => byMetric[i].label) |
|
c.yAxis.ticks(5).tickFormat(d => d3.format('.0%')(d)) |
|
|
|
d3.drawAxis(c) |
|
util.addAxisLabel(c, byMetric.label + ' →', byMetricIndex ? '' : 'Accuracy') |
|
util.ggPlotBg(c, false) |
|
|
|
c.svg.select('.x').raise() |
|
c.svg.selectAll('.axis').st({pointerEvents: 'none'}) |
|
|
|
c.svg.append('defs').append('linearGradient#purple-to-orange') |
|
.at({x1: '0%', x2: '0%', y1: '0%', y2: '100%'}) |
|
.append('stop').at({offset: '0%', 'stop-color': 'purple'}).parent() |
|
.append('stop').at({offset: '100%', 'stop-color': 'orange'}) |
|
|
|
c.svg.append('defs').append('linearGradient#orange-to-purple') |
|
.at({x1: '0%', x2: '0%', y2: '0%', y1: '100%'}) |
|
.append('stop').at({offset: '0%', 'stop-color': 'purple'}).parent() |
|
.append('stop').at({offset: '100%', 'stop-color': 'orange'}) |
|
|
|
var colSel = c.svg.appendMany('g', byMetric) |
|
.translate(d => c.x(d.metricIndex) + .5, 0) |
|
.st({pointerEvents: 'none'}) |
|
|
|
var pathSel = colSel.append('path') |
|
.at({stroke: 'url(#purple-to-orange)', strokeWidth: 1}) |
|
|
|
var rectSel = colSel.append('rect') |
|
.at({width: 1, x: -.5}) |
|
|
|
var origCircleSel = colSel.append('circle') |
|
.at({r: 3, fill: 'purple', stroke: '#000', strokeWidth: .5}) |
|
|
|
var rotCircleSel = colSel.append('circle') |
|
.at({r: 3, fill: 'orange', stroke: '#000', strokeWidth: .5}) |
|
|
|
function clampY(d){ |
|
return d3.clamp(0, c.y(d), c.height + 3) |
|
} |
|
|
|
byMetric.updateActiveCol = function(){ |
|
var findObj = {} |
|
byMetrics |
|
.filter(d => d != byMetric) |
|
.forEach(d => { |
|
findObj[d.metricStr] = d.active.key |
|
}) |
|
|
|
byMetric.forEach(col => { |
|
col.active = _.find(col, findObj) |
|
}) |
|
|
|
origCircleSel.at({cy: d => clampY(d.active.accuracy_orig)}) |
|
rotCircleSel.at({cy: d => clampY(d.active.accuracy_rot)}) |
|
|
|
|
|
|
|
|
|
|
|
rectSel.at({ |
|
y: d => Math.min(clampY(d.active.accuracy_orig), clampY(d.active.accuracy_rot)), |
|
height: d => Math.abs(clampY(d.active.accuracy_orig) - clampY(d.active.accuracy_rot)), |
|
fill: d => d.active.accuracy_orig > d.active.accuracy_rot ? 'url(#purple-to-orange)' : 'url(#orange-to-purple)' |
|
}) |
|
} |
|
byMetric.updateActiveCol() |
|
|
|
|
|
c.svg |
|
.call(d3.attachTooltip) |
|
.st({cursor: 'pointer'}) |
|
.on('mousemove', function(d, i, node, isClickOverride){ |
|
var [mx] = d3.mouse(this) |
|
var metricIndex = Math.round(c.x.invert(mx)) |
|
|
|
var prevActive = byMetric.active |
|
byMetric.active = byMetric[metricIndex] |
|
updateTooltip() |
|
byMetric.active = prevActive |
|
|
|
if (isLock && !isClickOverride) return |
|
byMetric.setActiveCol(byMetric[metricIndex]) |
|
|
|
return byMetric[metricIndex] |
|
}) |
|
.on('click', clickCb) |
|
.on('mouseexit', () => isLock = false) |
|
|
|
|
|
byMetric.setActiveCol = function(col){ |
|
if (col) byMetric.active = col |
|
|
|
c.svg.selectAll('.x .tick') |
|
.classed('active', i => i == byMetric.active.metricIndex) |
|
|
|
colSel.classed('active', d => d == byMetric.active) |
|
|
|
if (col) renderActiveCol() |
|
} |
|
byMetric.setActiveCol() |
|
} |
|
|
|
function renderActiveCol(){ |
|
byMetrics.forEach(d => { |
|
if (d.updateActiveCol) d.updateActiveCol() |
|
}) |
|
|
|
var findObj = {} |
|
byMetrics.forEach(d => findObj[d.metricStr] = d.active.key) |
|
var match = _.find(data, findObj) |
|
|
|
byMetrics[2].forEach(d => { |
|
if (d.updateActiveRect) d.updateActiveRect(match) |
|
}) |
|
} |
|
|
|
function updateTooltip(d){ |
|
if (!d){ |
|
var findObj = {} |
|
byMetrics.forEach(d => findObj[d.metricStr] = d.active.key) |
|
d = _.find(data, findObj) |
|
} |
|
|
|
var epsilon = Math.round(d[0].epsilon*100)/100 |
|
ttSel.html(` |
|
<div> |
|
<b>${d3.format('.0%')(d.accuracy_orig)}</b> |
|
accuracy on |
|
<span style='padding: 2px; background: purple; color: #fff'> |
|
original digits |
|
</span> |
|
<div> |
|
<div> |
|
<b>${d3.format('.0%')(d.accuracy_rot)}</b> |
|
accuracy on |
|
<span style='padding: 2px; background: orange; color: #000'> |
|
rotated digits |
|
</span> |
|
<br> |
|
<br> |
|
<div>Training points: ${d3.format(',')(d.dataset_size)}</div> |
|
<div>Privacy: ${epsilon} ε</div> |
|
<div>Rotated in training data: ${d3.format('.0%')(d.minority_percent)} </div> |
|
|
|
`).st({width: 230}) |
|
|
|
ttSel.classed('tooltip-footnote', 0) |
|
} |
|
|
|
function clickCb(d, i, node){ |
|
var mFn = d3.select(this).on('mouseover') || d3.select(this).on('mousemove') |
|
|
|
var e = mFn.call(this, d, i, node, true) |
|
isLock = e == isLock ? null : e |
|
} |
|
|
|
|
|
})() |
|
|