Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
import torch | |
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
from gradio_client import Client | |
import os | |
import spaces | |
import json | |
dpt_beit = pipeline(task = "depth-estimation", model="Intel/dpt-beit-base-384", device=0) | |
depth_anything = pipeline(task = "depth-estimation", model="nielsr/depth-anything-small", device=0) | |
dpt_large = pipeline(task = "depth-estimation", model="intel/dpt-large", device=0) | |
def depth_anything_inference(img): | |
return depth_anything(img)["depth"] | |
def dpt_beit_inference(img): | |
return dpt_beit(img)["depth"] | |
def dpt_large_inference(img): | |
return dpt_large(img)["depth"] | |
def infer(img): | |
return dpt_large_inference(img), dpt_beit_inference(img), depth_anything_inference(img) | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>Compare Depth Estimation Models<center><h1>") | |
gr.HTML("<h2><center>In this Space, you can compare different depth estimation models: [DPT-Large](https://huggingface.co/Intel/dpt-large), [DPT with BeiT backbone](https://huggingface.co/Intel/dpt-beit-large-512) and the recent [Depth Anything Model's small checkpoint](https://huggingface.co/LiheYoung/depth-anything-small-hf).<center><h2>") | |
gr.HTML("<h1><center>Simply upload an image or try the example to see the outputs.<center><h1>") | |
with gr.Column(): | |
with gr.Row(): | |
input_img = gr.Image(label="Input Image", type="pil") | |
with gr.Row(): | |
output_1 = gr.Image(type="pil", label="DPT-Large") | |
output_2 = gr.Image(type="pil", label="DPT with BeiT Backbone") | |
output_3 = gr.Image(type="pil", label="Depth Anything") | |
gr.Examples([["bee.jpg"]], | |
inputs = input_img, | |
outputs = [output_1, output_2, output_3], | |
fn=infer, | |
cache_examples=True, | |
label='Click on any Examples below to get depth estimation results quickly π' | |
) | |
input_img.change(infer, [input_img], [output_1, output_2, output_3]) | |
demo.launch(debug=True) |