mervenoyan's picture
commit files to HF hub
bd9ac5f
// https://github.com/pair-code/umap-js Copyright 2019 Google
(function webpackUniversalModuleDefinition(root, factory) {
if(typeof exports === 'object' && typeof module === 'object')
module.exports = factory();
else if(typeof define === 'function' && define.amd)
define([], factory);
else {
var a = factory();
for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i];
}
})(window, function() {
return /******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId]) {
/******/ return installedModules[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ i: moduleId,
/******/ l: false,
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Flag the module as loaded
/******/ module.l = true;
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/******/
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/
/******/ // define getter function for harmony exports
/******/ __webpack_require__.d = function(exports, name, getter) {
/******/ if(!__webpack_require__.o(exports, name)) {
/******/ Object.defineProperty(exports, name, { enumerable: true, get: getter });
/******/ }
/******/ };
/******/
/******/ // define __esModule on exports
/******/ __webpack_require__.r = function(exports) {
/******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) {
/******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });
/******/ }
/******/ Object.defineProperty(exports, '__esModule', { value: true });
/******/ };
/******/
/******/ // create a fake namespace object
/******/ // mode & 1: value is a module id, require it
/******/ // mode & 2: merge all properties of value into the ns
/******/ // mode & 4: return value when already ns object
/******/ // mode & 8|1: behave like require
/******/ __webpack_require__.t = function(value, mode) {
/******/ if(mode & 1) value = __webpack_require__(value);
/******/ if(mode & 8) return value;
/******/ if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value;
/******/ var ns = Object.create(null);
/******/ __webpack_require__.r(ns);
/******/ Object.defineProperty(ns, 'default', { enumerable: true, value: value });
/******/ if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key));
/******/ return ns;
/******/ };
/******/
/******/ // getDefaultExport function for compatibility with non-harmony modules
/******/ __webpack_require__.n = function(module) {
/******/ var getter = module && module.__esModule ?
/******/ function getDefault() { return module['default']; } :
/******/ function getModuleExports() { return module; };
/******/ __webpack_require__.d(getter, 'a', getter);
/******/ return getter;
/******/ };
/******/
/******/ // Object.prototype.hasOwnProperty.call
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/
/******/
/******/ // Load entry module and return exports
/******/ return __webpack_require__(__webpack_require__.s = 5);
/******/ })
/************************************************************************/
/******/ ([
/* 0 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
const toString = Object.prototype.toString;
function isAnyArray(object) {
return toString.call(object).endsWith('Array]');
}
module.exports = isAnyArray;
/***/ }),
/* 1 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var __values = (this && this.__values) || function (o) {
var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0;
if (m) return m.call(o);
return {
next: function () {
if (o && i >= o.length) o = void 0;
return { value: o && o[i++], done: !o };
}
};
};
Object.defineProperty(exports, "__esModule", { value: true });
function tauRandInt(n, random) {
return Math.floor(random() * n);
}
exports.tauRandInt = tauRandInt;
function tauRand(random) {
return random();
}
exports.tauRand = tauRand;
function norm(vec) {
var e_1, _a;
var result = 0;
try {
for (var vec_1 = __values(vec), vec_1_1 = vec_1.next(); !vec_1_1.done; vec_1_1 = vec_1.next()) {
var item = vec_1_1.value;
result += Math.pow(item, 2);
}
}
catch (e_1_1) { e_1 = { error: e_1_1 }; }
finally {
try {
if (vec_1_1 && !vec_1_1.done && (_a = vec_1.return)) _a.call(vec_1);
}
finally { if (e_1) throw e_1.error; }
}
return Math.sqrt(result);
}
exports.norm = norm;
function empty(n) {
var output = [];
for (var i = 0; i < n; i++) {
output.push(undefined);
}
return output;
}
exports.empty = empty;
function range(n) {
return empty(n).map(function (_, i) { return i; });
}
exports.range = range;
function filled(n, v) {
return empty(n).map(function () { return v; });
}
exports.filled = filled;
function zeros(n) {
return filled(n, 0);
}
exports.zeros = zeros;
function ones(n) {
return filled(n, 1);
}
exports.ones = ones;
function linear(a, b, len) {
return empty(len).map(function (_, i) {
return a + i * ((b - a) / (len - 1));
});
}
exports.linear = linear;
function sum(input) {
return input.reduce(function (sum, val) { return sum + val; });
}
exports.sum = sum;
function mean(input) {
return sum(input) / input.length;
}
exports.mean = mean;
function max(input) {
var max = 0;
for (var i = 0; i < input.length; i++) {
max = input[i] > max ? input[i] : max;
}
return max;
}
exports.max = max;
function max2d(input) {
var max = 0;
for (var i = 0; i < input.length; i++) {
for (var j = 0; j < input[i].length; j++) {
max = input[i][j] > max ? input[i][j] : max;
}
}
return max;
}
exports.max2d = max2d;
function rejectionSample(nSamples, poolSize, random) {
var result = zeros(nSamples);
for (var i = 0; i < nSamples; i++) {
var rejectSample = true;
while (rejectSample) {
var j = tauRandInt(poolSize, random);
var broken = false;
for (var k = 0; k < i; k++) {
if (j === result[k]) {
broken = true;
break;
}
}
if (!broken) {
rejectSample = false;
}
result[i] = j;
}
}
return result;
}
exports.rejectionSample = rejectionSample;
function reshape2d(x, a, b) {
var rows = [];
var count = 0;
var index = 0;
if (x.length !== a * b) {
throw new Error('Array dimensions must match input length.');
}
for (var i = 0; i < a; i++) {
var col = [];
for (var j = 0; j < b; j++) {
col.push(x[index]);
index += 1;
}
rows.push(col);
count += 1;
}
return rows;
}
exports.reshape2d = reshape2d;
/***/ }),
/* 2 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var __importStar = (this && this.__importStar) || function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k];
result["default"] = mod;
return result;
};
Object.defineProperty(exports, "__esModule", { value: true });
var utils = __importStar(__webpack_require__(1));
function makeHeap(nPoints, size) {
var makeArrays = function (fillValue) {
return utils.empty(nPoints).map(function () {
return utils.filled(size, fillValue);
});
};
var heap = [];
heap.push(makeArrays(-1));
heap.push(makeArrays(Infinity));
heap.push(makeArrays(0));
return heap;
}
exports.makeHeap = makeHeap;
function rejectionSample(nSamples, poolSize, random) {
var result = utils.zeros(nSamples);
for (var i = 0; i < nSamples; i++) {
var rejectSample = true;
var j = 0;
while (rejectSample) {
j = utils.tauRandInt(poolSize, random);
var broken = false;
for (var k = 0; k < i; k++) {
if (j === result[k]) {
broken = true;
break;
}
}
if (!broken)
rejectSample = false;
}
result[i] = j;
}
return result;
}
exports.rejectionSample = rejectionSample;
function heapPush(heap, row, weight, index, flag) {
row = Math.floor(row);
var indices = heap[0][row];
var weights = heap[1][row];
var isNew = heap[2][row];
if (weight >= weights[0]) {
return 0;
}
for (var i = 0; i < indices.length; i++) {
if (index === indices[i]) {
return 0;
}
}
return uncheckedHeapPush(heap, row, weight, index, flag);
}
exports.heapPush = heapPush;
function uncheckedHeapPush(heap, row, weight, index, flag) {
var indices = heap[0][row];
var weights = heap[1][row];
var isNew = heap[2][row];
if (weight >= weights[0]) {
return 0;
}
weights[0] = weight;
indices[0] = index;
isNew[0] = flag;
var i = 0;
var iSwap = 0;
while (true) {
var ic1 = 2 * i + 1;
var ic2 = ic1 + 1;
var heapShape2 = heap[0][0].length;
if (ic1 >= heapShape2) {
break;
}
else if (ic2 >= heapShape2) {
if (weights[ic1] > weight) {
iSwap = ic1;
}
else {
break;
}
}
else if (weights[ic1] >= weights[ic2]) {
if (weight < weights[ic1]) {
iSwap = ic1;
}
else {
break;
}
}
else {
if (weight < weights[ic2]) {
iSwap = ic2;
}
else {
break;
}
}
weights[i] = weights[iSwap];
indices[i] = indices[iSwap];
isNew[i] = isNew[iSwap];
i = iSwap;
}
weights[i] = weight;
indices[i] = index;
isNew[i] = flag;
return 1;
}
exports.uncheckedHeapPush = uncheckedHeapPush;
function buildCandidates(currentGraph, nVertices, nNeighbors, maxCandidates, random) {
var candidateNeighbors = makeHeap(nVertices, maxCandidates);
for (var i = 0; i < nVertices; i++) {
for (var j = 0; j < nNeighbors; j++) {
if (currentGraph[0][i][j] < 0) {
continue;
}
var idx = currentGraph[0][i][j];
var isn = currentGraph[2][i][j];
var d = utils.tauRand(random);
heapPush(candidateNeighbors, i, d, idx, isn);
heapPush(candidateNeighbors, idx, d, i, isn);
currentGraph[2][i][j] = 0;
}
}
return candidateNeighbors;
}
exports.buildCandidates = buildCandidates;
function deheapSort(heap) {
var indices = heap[0];
var weights = heap[1];
for (var i = 0; i < indices.length; i++) {
var indHeap = indices[i];
var distHeap = weights[i];
for (var j = 0; j < indHeap.length - 1; j++) {
var indHeapIndex = indHeap.length - j - 1;
var distHeapIndex = distHeap.length - j - 1;
var temp1 = indHeap[0];
indHeap[0] = indHeap[indHeapIndex];
indHeap[indHeapIndex] = temp1;
var temp2 = distHeap[0];
distHeap[0] = distHeap[distHeapIndex];
distHeap[distHeapIndex] = temp2;
siftDown(distHeap, indHeap, distHeapIndex, 0);
}
}
return { indices: indices, weights: weights };
}
exports.deheapSort = deheapSort;
function siftDown(heap1, heap2, ceiling, elt) {
while (elt * 2 + 1 < ceiling) {
var leftChild = elt * 2 + 1;
var rightChild = leftChild + 1;
var swap = elt;
if (heap1[swap] < heap1[leftChild]) {
swap = leftChild;
}
if (rightChild < ceiling && heap1[swap] < heap1[rightChild]) {
swap = rightChild;
}
if (swap === elt) {
break;
}
else {
var temp1 = heap1[elt];
heap1[elt] = heap1[swap];
heap1[swap] = temp1;
var temp2 = heap2[elt];
heap2[elt] = heap2[swap];
heap2[swap] = temp2;
elt = swap;
}
}
}
function smallestFlagged(heap, row) {
var ind = heap[0][row];
var dist = heap[1][row];
var flag = heap[2][row];
var minDist = Infinity;
var resultIndex = -1;
for (var i = 0; i > ind.length; i++) {
if (flag[i] === 1 && dist[i] < minDist) {
minDist = dist[i];
resultIndex = i;
}
}
if (resultIndex >= 0) {
flag[resultIndex] = 0;
return Math.floor(ind[resultIndex]);
}
else {
return -1;
}
}
exports.smallestFlagged = smallestFlagged;
/***/ }),
/* 3 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var __read = (this && this.__read) || function (o, n) {
var m = typeof Symbol === "function" && o[Symbol.iterator];
if (!m) return o;
var i = m.call(o), r, ar = [], e;
try {
while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
}
catch (error) { e = { error: error }; }
finally {
try {
if (r && !r.done && (m = i["return"])) m.call(i);
}
finally { if (e) throw e.error; }
}
return ar;
};
var __spread = (this && this.__spread) || function () {
for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i]));
return ar;
};
var __values = (this && this.__values) || function (o) {
var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0;
if (m) return m.call(o);
return {
next: function () {
if (o && i >= o.length) o = void 0;
return { value: o && o[i++], done: !o };
}
};
};
var __importStar = (this && this.__importStar) || function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k];
result["default"] = mod;
return result;
};
Object.defineProperty(exports, "__esModule", { value: true });
var _a;
var utils = __importStar(__webpack_require__(1));
var SparseMatrix = (function () {
function SparseMatrix(rows, cols, values, dims) {
this.entries = new Map();
this.nRows = 0;
this.nCols = 0;
this.rows = __spread(rows);
this.cols = __spread(cols);
this.values = __spread(values);
for (var i = 0; i < values.length; i++) {
var key = this.makeKey(this.rows[i], this.cols[i]);
this.entries.set(key, i);
}
this.nRows = dims[0];
this.nCols = dims[1];
}
SparseMatrix.prototype.makeKey = function (row, col) {
return row + ":" + col;
};
SparseMatrix.prototype.checkDims = function (row, col) {
var withinBounds = row < this.nRows && col < this.nCols;
if (!withinBounds) {
throw new Error('array index out of bounds');
}
};
SparseMatrix.prototype.set = function (row, col, value) {
this.checkDims(row, col);
var key = this.makeKey(row, col);
if (!this.entries.has(key)) {
this.rows.push(row);
this.cols.push(col);
this.values.push(value);
this.entries.set(key, this.values.length - 1);
}
else {
var index = this.entries.get(key);
this.values[index] = value;
}
};
SparseMatrix.prototype.get = function (row, col, defaultValue) {
if (defaultValue === void 0) { defaultValue = 0; }
this.checkDims(row, col);
var key = this.makeKey(row, col);
if (this.entries.has(key)) {
var index = this.entries.get(key);
return this.values[index];
}
else {
return defaultValue;
}
};
SparseMatrix.prototype.getDims = function () {
return [this.nRows, this.nCols];
};
SparseMatrix.prototype.getRows = function () {
return __spread(this.rows);
};
SparseMatrix.prototype.getCols = function () {
return __spread(this.cols);
};
SparseMatrix.prototype.getValues = function () {
return __spread(this.values);
};
SparseMatrix.prototype.forEach = function (fn) {
for (var i = 0; i < this.values.length; i++) {
fn(this.values[i], this.rows[i], this.cols[i]);
}
};
SparseMatrix.prototype.map = function (fn) {
var vals = [];
for (var i = 0; i < this.values.length; i++) {
vals.push(fn(this.values[i], this.rows[i], this.cols[i]));
}
var dims = [this.nRows, this.nCols];
return new SparseMatrix(this.rows, this.cols, vals, dims);
};
SparseMatrix.prototype.toArray = function () {
var _this = this;
var rows = utils.empty(this.nRows);
var output = rows.map(function () {
return utils.zeros(_this.nCols);
});
for (var i = 0; i < this.values.length; i++) {
output[this.rows[i]][this.cols[i]] = this.values[i];
}
return output;
};
return SparseMatrix;
}());
exports.SparseMatrix = SparseMatrix;
function transpose(matrix) {
var cols = [];
var rows = [];
var vals = [];
matrix.forEach(function (value, row, col) {
cols.push(row);
rows.push(col);
vals.push(value);
});
var dims = [matrix.nCols, matrix.nRows];
return new SparseMatrix(rows, cols, vals, dims);
}
exports.transpose = transpose;
function identity(size) {
var _a = __read(size, 1), rows = _a[0];
var matrix = new SparseMatrix([], [], [], size);
for (var i = 0; i < rows; i++) {
matrix.set(i, i, 1);
}
return matrix;
}
exports.identity = identity;
function pairwiseMultiply(a, b) {
return elementWise(a, b, function (x, y) { return x * y; });
}
exports.pairwiseMultiply = pairwiseMultiply;
function add(a, b) {
return elementWise(a, b, function (x, y) { return x + y; });
}
exports.add = add;
function subtract(a, b) {
return elementWise(a, b, function (x, y) { return x - y; });
}
exports.subtract = subtract;
function maximum(a, b) {
return elementWise(a, b, function (x, y) { return (x > y ? x : y); });
}
exports.maximum = maximum;
function multiplyScalar(a, scalar) {
return a.map(function (value) {
return value * scalar;
});
}
exports.multiplyScalar = multiplyScalar;
function eliminateZeros(m) {
var zeroIndices = new Set();
var values = m.getValues();
var rows = m.getRows();
var cols = m.getCols();
for (var i = 0; i < values.length; i++) {
if (values[i] === 0) {
zeroIndices.add(i);
}
}
var removeByZeroIndex = function (_, index) { return !zeroIndices.has(index); };
var nextValues = values.filter(removeByZeroIndex);
var nextRows = rows.filter(removeByZeroIndex);
var nextCols = cols.filter(removeByZeroIndex);
return new SparseMatrix(nextRows, nextCols, nextValues, m.getDims());
}
exports.eliminateZeros = eliminateZeros;
function normalize(m, normType) {
if (normType === void 0) { normType = "l2"; }
var e_1, _a;
var normFn = normFns[normType];
var colsByRow = new Map();
m.forEach(function (_, row, col) {
var cols = colsByRow.get(row) || [];
cols.push(col);
colsByRow.set(row, cols);
});
var nextMatrix = new SparseMatrix([], [], [], m.getDims());
var _loop_1 = function (row) {
var cols = colsByRow.get(row).sort();
var vals = cols.map(function (col) { return m.get(row, col); });
var norm = normFn(vals);
for (var i = 0; i < norm.length; i++) {
nextMatrix.set(row, cols[i], norm[i]);
}
};
try {
for (var _b = __values(colsByRow.keys()), _c = _b.next(); !_c.done; _c = _b.next()) {
var row = _c.value;
_loop_1(row);
}
}
catch (e_1_1) { e_1 = { error: e_1_1 }; }
finally {
try {
if (_c && !_c.done && (_a = _b.return)) _a.call(_b);
}
finally { if (e_1) throw e_1.error; }
}
return nextMatrix;
}
exports.normalize = normalize;
var normFns = (_a = {},
_a["max"] = function (xs) {
var max = -Infinity;
for (var i = 0; i < xs.length; i++) {
max = xs[i] > max ? xs[i] : max;
}
return xs.map(function (x) { return x / max; });
},
_a["l1"] = function (xs) {
var sum = 0;
for (var i = 0; i < xs.length; i++) {
sum += xs[i];
}
return xs.map(function (x) { return x / sum; });
},
_a["l2"] = function (xs) {
var sum = 0;
for (var i = 0; i < xs.length; i++) {
sum += Math.pow(xs[i], 2);
}
return xs.map(function (x) { return Math.sqrt(Math.pow(x, 2) / sum); });
},
_a);
function elementWise(a, b, op) {
var visited = new Set();
var rows = [];
var cols = [];
var vals = [];
var operate = function (row, col) {
rows.push(row);
cols.push(col);
var nextValue = op(a.get(row, col), b.get(row, col));
vals.push(nextValue);
};
var valuesA = a.getValues();
var rowsA = a.getRows();
var colsA = a.getCols();
for (var i = 0; i < valuesA.length; i++) {
var row = rowsA[i];
var col = colsA[i];
var key = row + ":" + col;
visited.add(key);
operate(row, col);
}
var valuesB = b.getValues();
var rowsB = b.getRows();
var colsB = b.getCols();
for (var i = 0; i < valuesB.length; i++) {
var row = rowsB[i];
var col = colsB[i];
var key = row + ":" + col;
if (visited.has(key))
continue;
operate(row, col);
}
var dims = [a.nRows, a.nCols];
return new SparseMatrix(rows, cols, vals, dims);
}
function getCSR(x) {
var entries = [];
x.forEach(function (value, row, col) {
entries.push({ value: value, row: row, col: col });
});
entries.sort(function (a, b) {
if (a.row === b.row) {
return a.col - b.col;
}
else {
return a.row - b.col;
}
});
var indices = [];
var values = [];
var indptr = [];
var currentRow = -1;
for (var i = 0; i < entries.length; i++) {
var _a = entries[i], row = _a.row, col = _a.col, value = _a.value;
if (row !== currentRow) {
currentRow = row;
indptr.push(i);
}
indices.push(col);
values.push(value);
}
return { indices: indices, values: values, indptr: indptr };
}
exports.getCSR = getCSR;
/***/ }),
/* 4 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var __read = (this && this.__read) || function (o, n) {
var m = typeof Symbol === "function" && o[Symbol.iterator];
if (!m) return o;
var i = m.call(o), r, ar = [], e;
try {
while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
}
catch (error) { e = { error: error }; }
finally {
try {
if (r && !r.done && (m = i["return"])) m.call(i);
}
finally { if (e) throw e.error; }
}
return ar;
};
var __spread = (this && this.__spread) || function () {
for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i]));
return ar;
};
var __values = (this && this.__values) || function (o) {
var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0;
if (m) return m.call(o);
return {
next: function () {
if (o && i >= o.length) o = void 0;
return { value: o && o[i++], done: !o };
}
};
};
var __importStar = (this && this.__importStar) || function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k];
result["default"] = mod;
return result;
};
Object.defineProperty(exports, "__esModule", { value: true });
var utils = __importStar(__webpack_require__(1));
var FlatTree = (function () {
function FlatTree(hyperplanes, offsets, children, indices) {
this.hyperplanes = hyperplanes;
this.offsets = offsets;
this.children = children;
this.indices = indices;
}
return FlatTree;
}());
exports.FlatTree = FlatTree;
function makeForest(data, nNeighbors, nTrees, random) {
var leafSize = Math.max(10, nNeighbors);
var trees = utils
.range(nTrees)
.map(function (_, i) { return makeTree(data, leafSize, i, random); });
var forest = trees.map(function (tree) { return flattenTree(tree, leafSize); });
return forest;
}
exports.makeForest = makeForest;
function makeTree(data, leafSize, n, random) {
if (leafSize === void 0) { leafSize = 30; }
var indices = utils.range(data.length);
var tree = makeEuclideanTree(data, indices, leafSize, n, random);
return tree;
}
function makeEuclideanTree(data, indices, leafSize, q, random) {
if (leafSize === void 0) { leafSize = 30; }
if (indices.length > leafSize) {
var splitResults = euclideanRandomProjectionSplit(data, indices, random);
var indicesLeft = splitResults.indicesLeft, indicesRight = splitResults.indicesRight, hyperplane = splitResults.hyperplane, offset = splitResults.offset;
var leftChild = makeEuclideanTree(data, indicesLeft, leafSize, q + 1, random);
var rightChild = makeEuclideanTree(data, indicesRight, leafSize, q + 1, random);
var node = { leftChild: leftChild, rightChild: rightChild, isLeaf: false, hyperplane: hyperplane, offset: offset };
return node;
}
else {
var node = { indices: indices, isLeaf: true };
return node;
}
}
function euclideanRandomProjectionSplit(data, indices, random) {
var dim = data[0].length;
var leftIndex = utils.tauRandInt(indices.length, random);
var rightIndex = utils.tauRandInt(indices.length, random);
rightIndex += leftIndex === rightIndex ? 1 : 0;
rightIndex = rightIndex % indices.length;
var left = indices[leftIndex];
var right = indices[rightIndex];
var hyperplaneOffset = 0;
var hyperplaneVector = utils.zeros(dim);
for (var i = 0; i < hyperplaneVector.length; i++) {
hyperplaneVector[i] = data[left][i] - data[right][i];
hyperplaneOffset -=
(hyperplaneVector[i] * (data[left][i] + data[right][i])) / 2.0;
}
var nLeft = 0;
var nRight = 0;
var side = utils.zeros(indices.length);
for (var i = 0; i < indices.length; i++) {
var margin = hyperplaneOffset;
for (var d = 0; d < dim; d++) {
margin += hyperplaneVector[d] * data[indices[i]][d];
}
if (margin === 0) {
side[i] = utils.tauRandInt(2, random);
if (side[i] === 0) {
nLeft += 1;
}
else {
nRight += 1;
}
}
else if (margin > 0) {
side[i] = 0;
nLeft += 1;
}
else {
side[i] = 1;
nRight += 1;
}
}
var indicesLeft = utils.zeros(nLeft);
var indicesRight = utils.zeros(nRight);
nLeft = 0;
nRight = 0;
for (var i in utils.range(side.length)) {
if (side[i] === 0) {
indicesLeft[nLeft] = indices[i];
nLeft += 1;
}
else {
indicesRight[nRight] = indices[i];
nRight += 1;
}
}
return {
indicesLeft: indicesLeft,
indicesRight: indicesRight,
hyperplane: hyperplaneVector,
offset: hyperplaneOffset,
};
}
function flattenTree(tree, leafSize) {
var nNodes = numNodes(tree);
var nLeaves = numLeaves(tree);
var hyperplanes = utils
.range(nNodes)
.map(function () { return utils.zeros(tree.hyperplane.length); });
var offsets = utils.zeros(nNodes);
var children = utils.range(nNodes).map(function () { return [-1, -1]; });
var indices = utils
.range(nLeaves)
.map(function () { return utils.range(leafSize).map(function () { return -1; }); });
recursiveFlatten(tree, hyperplanes, offsets, children, indices, 0, 0);
return new FlatTree(hyperplanes, offsets, children, indices);
}
function recursiveFlatten(tree, hyperplanes, offsets, children, indices, nodeNum, leafNum) {
var _a;
if (tree.isLeaf) {
children[nodeNum][0] = -leafNum;
(_a = indices[leafNum]).splice.apply(_a, __spread([0, tree.indices.length], tree.indices));
leafNum += 1;
return { nodeNum: nodeNum, leafNum: leafNum };
}
else {
hyperplanes[nodeNum] = tree.hyperplane;
offsets[nodeNum] = tree.offset;
children[nodeNum][0] = nodeNum + 1;
var oldNodeNum = nodeNum;
var res = recursiveFlatten(tree.leftChild, hyperplanes, offsets, children, indices, nodeNum + 1, leafNum);
nodeNum = res.nodeNum;
leafNum = res.leafNum;
children[oldNodeNum][1] = nodeNum + 1;
res = recursiveFlatten(tree.rightChild, hyperplanes, offsets, children, indices, nodeNum + 1, leafNum);
return { nodeNum: res.nodeNum, leafNum: res.leafNum };
}
}
function numNodes(tree) {
if (tree.isLeaf) {
return 1;
}
else {
return 1 + numNodes(tree.leftChild) + numNodes(tree.rightChild);
}
}
function numLeaves(tree) {
if (tree.isLeaf) {
return 1;
}
else {
return numLeaves(tree.leftChild) + numLeaves(tree.rightChild);
}
}
function makeLeafArray(rpForest) {
var e_1, _a;
if (rpForest.length > 0) {
var output = [];
try {
for (var rpForest_1 = __values(rpForest), rpForest_1_1 = rpForest_1.next(); !rpForest_1_1.done; rpForest_1_1 = rpForest_1.next()) {
var tree = rpForest_1_1.value;
output.push.apply(output, __spread(tree.indices));
}
}
catch (e_1_1) { e_1 = { error: e_1_1 }; }
finally {
try {
if (rpForest_1_1 && !rpForest_1_1.done && (_a = rpForest_1.return)) _a.call(rpForest_1);
}
finally { if (e_1) throw e_1.error; }
}
return output;
}
else {
return [[-1]];
}
}
exports.makeLeafArray = makeLeafArray;
function selectSide(hyperplane, offset, point, random) {
var margin = offset;
for (var d = 0; d < point.length; d++) {
margin += hyperplane[d] * point[d];
}
if (margin === 0) {
var side = utils.tauRandInt(2, random);
return side;
}
else if (margin > 0) {
return 0;
}
else {
return 1;
}
}
function searchFlatTree(point, tree, random) {
var node = 0;
while (tree.children[node][0] > 0) {
var side = selectSide(tree.hyperplanes[node], tree.offsets[node], point, random);
if (side === 0) {
node = tree.children[node][0];
}
else {
node = tree.children[node][1];
}
}
var index = -1 * tree.children[node][0];
return tree.indices[index];
}
exports.searchFlatTree = searchFlatTree;
/***/ }),
/* 5 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var umap_1 = __webpack_require__(6);
exports.UMAP = umap_1.UMAP;
/***/ }),
/* 6 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
var __generator = (this && this.__generator) || function (thisArg, body) {
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
function verb(n) { return function (v) { return step([n, v]); }; }
function step(op) {
if (f) throw new TypeError("Generator is already executing.");
while (_) try {
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
if (y = 0, t) op = [op[0] & 2, t.value];
switch (op[0]) {
case 0: case 1: t = op; break;
case 4: _.label++; return { value: op[1], done: false };
case 5: _.label++; y = op[1]; op = [0]; continue;
case 7: op = _.ops.pop(); _.trys.pop(); continue;
default:
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
if (t[2]) _.ops.pop();
_.trys.pop(); continue;
}
op = body.call(thisArg, _);
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
}
};
var __read = (this && this.__read) || function (o, n) {
var m = typeof Symbol === "function" && o[Symbol.iterator];
if (!m) return o;
var i = m.call(o), r, ar = [], e;
try {
while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
}
catch (error) { e = { error: error }; }
finally {
try {
if (r && !r.done && (m = i["return"])) m.call(i);
}
finally { if (e) throw e.error; }
}
return ar;
};
var __spread = (this && this.__spread) || function () {
for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i]));
return ar;
};
var __importStar = (this && this.__importStar) || function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k];
result["default"] = mod;
return result;
};
var __importDefault = (this && this.__importDefault) || function (mod) {
return (mod && mod.__esModule) ? mod : { "default": mod };
};
Object.defineProperty(exports, "__esModule", { value: true });
var heap = __importStar(__webpack_require__(2));
var matrix = __importStar(__webpack_require__(3));
var nnDescent = __importStar(__webpack_require__(7));
var tree = __importStar(__webpack_require__(4));
var utils = __importStar(__webpack_require__(1));
var ml_levenberg_marquardt_1 = __importDefault(__webpack_require__(8));
var SMOOTH_K_TOLERANCE = 1e-5;
var MIN_K_DIST_SCALE = 1e-3;
var UMAP = (function () {
function UMAP(params) {
if (params === void 0) { params = {}; }
var _this = this;
this.learningRate = 1.0;
this.localConnectivity = 1.0;
this.minDist = 0.1;
this.nComponents = 2;
this.nEpochs = 0;
this.nNeighbors = 15;
this.negativeSampleRate = 5;
this.random = Math.random;
this.repulsionStrength = 1.0;
this.setOpMixRatio = 1.0;
this.spread = 1.0;
this.transformQueueSize = 4.0;
this.targetMetric = "categorical";
this.targetWeight = 0.5;
this.targetNNeighbors = this.nNeighbors;
this.distanceFn = euclidean;
this.isInitialized = false;
this.rpForest = [];
this.embedding = [];
this.optimizationState = new OptimizationState();
var setParam = function (key) {
if (params[key] !== undefined)
_this[key] = params[key];
};
setParam('distanceFn');
setParam('learningRate');
setParam('localConnectivity');
setParam('minDist');
setParam('nComponents');
setParam('nEpochs');
setParam('nNeighbors');
setParam('negativeSampleRate');
setParam('random');
setParam('repulsionStrength');
setParam('setOpMixRatio');
setParam('spread');
setParam('transformQueueSize');
}
UMAP.prototype.fit = function (X) {
this.initializeFit(X);
this.optimizeLayout();
return this.embedding;
};
UMAP.prototype.fitAsync = function (X, callback) {
if (callback === void 0) { callback = function () { return true; }; }
return __awaiter(this, void 0, void 0, function () {
return __generator(this, function (_a) {
switch (_a.label) {
case 0:
this.initializeFit(X);
return [4, this.optimizeLayoutAsync(callback)];
case 1:
_a.sent();
return [2, this.embedding];
}
});
});
};
UMAP.prototype.setSupervisedProjection = function (Y, params) {
if (params === void 0) { params = {}; }
this.Y = Y;
this.targetMetric = params.targetMetric || this.targetMetric;
this.targetWeight = params.targetWeight || this.targetWeight;
this.targetNNeighbors = params.targetNNeighbors || this.targetNNeighbors;
};
UMAP.prototype.setPrecomputedKNN = function (knnIndices, knnDistances) {
this.knnIndices = knnIndices;
this.knnDistances = knnDistances;
};
UMAP.prototype.initializeFit = function (X) {
if (this.X === X && this.isInitialized) {
return this.getNEpochs();
}
this.X = X;
if (!this.knnIndices && !this.knnDistances) {
var knnResults = this.nearestNeighbors(X);
this.knnIndices = knnResults.knnIndices;
this.knnDistances = knnResults.knnDistances;
}
this.graph = this.fuzzySimplicialSet(X, this.nNeighbors, this.setOpMixRatio);
this.makeSearchFns();
this.searchGraph = this.makeSearchGraph(X);
this.processGraphForSupervisedProjection();
var _a = this.initializeSimplicialSetEmbedding(), head = _a.head, tail = _a.tail, epochsPerSample = _a.epochsPerSample;
this.optimizationState.head = head;
this.optimizationState.tail = tail;
this.optimizationState.epochsPerSample = epochsPerSample;
this.initializeOptimization();
this.prepareForOptimizationLoop();
this.isInitialized = true;
return this.getNEpochs();
};
UMAP.prototype.makeSearchFns = function () {
var _a = nnDescent.makeInitializations(this.distanceFn), initFromTree = _a.initFromTree, initFromRandom = _a.initFromRandom;
this.initFromTree = initFromTree;
this.initFromRandom = initFromRandom;
this.search = nnDescent.makeInitializedNNSearch(this.distanceFn);
};
UMAP.prototype.makeSearchGraph = function (X) {
var knnIndices = this.knnIndices;
var knnDistances = this.knnDistances;
var dims = [X.length, X.length];
var searchGraph = new matrix.SparseMatrix([], [], [], dims);
for (var i = 0; i < knnIndices.length; i++) {
var knn = knnIndices[i];
var distances = knnDistances[i];
for (var j = 0; j < knn.length; j++) {
var neighbor = knn[j];
var distance = distances[j];
if (distance > 0) {
searchGraph.set(i, neighbor, distance);
}
}
}
var transpose = matrix.transpose(searchGraph);
return matrix.maximum(searchGraph, transpose);
};
UMAP.prototype.transform = function (toTransform) {
var _this = this;
var rawData = this.X;
if (rawData === undefined || rawData.length === 0) {
throw new Error('No data has been fit.');
}
var nNeighbors = Math.floor(this.nNeighbors * this.transformQueueSize);
var init = nnDescent.initializeSearch(this.rpForest, rawData, toTransform, nNeighbors, this.initFromRandom, this.initFromTree, this.random);
var result = this.search(rawData, this.searchGraph, init, toTransform);
var _a = heap.deheapSort(result), indices = _a.indices, distances = _a.weights;
indices = indices.map(function (x) { return x.slice(0, _this.nNeighbors); });
distances = distances.map(function (x) { return x.slice(0, _this.nNeighbors); });
var adjustedLocalConnectivity = Math.max(0, this.localConnectivity - 1);
var _b = this.smoothKNNDistance(distances, this.nNeighbors, adjustedLocalConnectivity), sigmas = _b.sigmas, rhos = _b.rhos;
var _c = this.computeMembershipStrengths(indices, distances, sigmas, rhos), rows = _c.rows, cols = _c.cols, vals = _c.vals;
var size = [toTransform.length, rawData.length];
var graph = new matrix.SparseMatrix(rows, cols, vals, size);
var normed = matrix.normalize(graph, "l1");
var csrMatrix = matrix.getCSR(normed);
var nPoints = toTransform.length;
var eIndices = utils.reshape2d(csrMatrix.indices, nPoints, this.nNeighbors);
var eWeights = utils.reshape2d(csrMatrix.values, nPoints, this.nNeighbors);
var embedding = initTransform(eIndices, eWeights, this.embedding);
var nEpochs = this.nEpochs
? this.nEpochs / 3
: graph.nRows <= 10000
? 100
: 30;
var graphMax = graph
.getValues()
.reduce(function (max, val) { return (val > max ? val : max); }, 0);
graph = graph.map(function (value) { return (value < graphMax / nEpochs ? 0 : value); });
graph = matrix.eliminateZeros(graph);
var epochsPerSample = this.makeEpochsPerSample(graph.getValues(), nEpochs);
var head = graph.getRows();
var tail = graph.getCols();
this.assignOptimizationStateParameters({
headEmbedding: embedding,
tailEmbedding: this.embedding,
head: head,
tail: tail,
currentEpoch: 0,
nEpochs: nEpochs,
nVertices: graph.getDims()[1],
epochsPerSample: epochsPerSample,
});
this.prepareForOptimizationLoop();
return this.optimizeLayout();
};
UMAP.prototype.processGraphForSupervisedProjection = function () {
var _a = this, Y = _a.Y, X = _a.X;
if (Y) {
if (Y.length !== X.length) {
throw new Error('Length of X and y must be equal');
}
if (this.targetMetric === "categorical") {
var lt = this.targetWeight < 1.0;
var farDist = lt ? 2.5 * (1.0 / (1.0 - this.targetWeight)) : 1.0e12;
this.graph = this.categoricalSimplicialSetIntersection(this.graph, Y, farDist);
}
}
};
UMAP.prototype.step = function () {
var currentEpoch = this.optimizationState.currentEpoch;
if (currentEpoch < this.getNEpochs()) {
this.optimizeLayoutStep(currentEpoch);
}
return this.optimizationState.currentEpoch;
};
UMAP.prototype.getEmbedding = function () {
return this.embedding;
};
UMAP.prototype.nearestNeighbors = function (X) {
var _a = this, distanceFn = _a.distanceFn, nNeighbors = _a.nNeighbors;
var log2 = function (n) { return Math.log(n) / Math.log(2); };
var metricNNDescent = nnDescent.makeNNDescent(distanceFn, this.random);
var round = function (n) {
return n === 0.5 ? 0 : Math.round(n);
};
var nTrees = 5 + Math.floor(round(Math.pow(X.length, 0.5) / 20.0));
var nIters = Math.max(5, Math.floor(Math.round(log2(X.length))));
this.rpForest = tree.makeForest(X, nNeighbors, nTrees, this.random);
var leafArray = tree.makeLeafArray(this.rpForest);
var _b = metricNNDescent(X, leafArray, nNeighbors, nIters), indices = _b.indices, weights = _b.weights;
return { knnIndices: indices, knnDistances: weights };
};
UMAP.prototype.fuzzySimplicialSet = function (X, nNeighbors, setOpMixRatio) {
if (setOpMixRatio === void 0) { setOpMixRatio = 1.0; }
var _a = this, _b = _a.knnIndices, knnIndices = _b === void 0 ? [] : _b, _c = _a.knnDistances, knnDistances = _c === void 0 ? [] : _c, localConnectivity = _a.localConnectivity;
var _d = this.smoothKNNDistance(knnDistances, nNeighbors, localConnectivity), sigmas = _d.sigmas, rhos = _d.rhos;
var _e = this.computeMembershipStrengths(knnIndices, knnDistances, sigmas, rhos), rows = _e.rows, cols = _e.cols, vals = _e.vals;
var size = [X.length, X.length];
var sparseMatrix = new matrix.SparseMatrix(rows, cols, vals, size);
var transpose = matrix.transpose(sparseMatrix);
var prodMatrix = matrix.pairwiseMultiply(sparseMatrix, transpose);
var a = matrix.subtract(matrix.add(sparseMatrix, transpose), prodMatrix);
var b = matrix.multiplyScalar(a, setOpMixRatio);
var c = matrix.multiplyScalar(prodMatrix, 1.0 - setOpMixRatio);
var result = matrix.add(b, c);
return result;
};
UMAP.prototype.categoricalSimplicialSetIntersection = function (simplicialSet, target, farDist, unknownDist) {
if (unknownDist === void 0) { unknownDist = 1.0; }
var intersection = fastIntersection(simplicialSet, target, unknownDist, farDist);
intersection = matrix.eliminateZeros(intersection);
return resetLocalConnectivity(intersection);
};
UMAP.prototype.smoothKNNDistance = function (distances, k, localConnectivity, nIter, bandwidth) {
if (localConnectivity === void 0) { localConnectivity = 1.0; }
if (nIter === void 0) { nIter = 64; }
if (bandwidth === void 0) { bandwidth = 1.0; }
var target = (Math.log(k) / Math.log(2)) * bandwidth;
var rho = utils.zeros(distances.length);
var result = utils.zeros(distances.length);
for (var i = 0; i < distances.length; i++) {
var lo = 0.0;
var hi = Infinity;
var mid = 1.0;
var ithDistances = distances[i];
var nonZeroDists = ithDistances.filter(function (d) { return d > 0.0; });
if (nonZeroDists.length >= localConnectivity) {
var index = Math.floor(localConnectivity);
var interpolation = localConnectivity - index;
if (index > 0) {
rho[i] = nonZeroDists[index - 1];
if (interpolation > SMOOTH_K_TOLERANCE) {
rho[i] +=
interpolation * (nonZeroDists[index] - nonZeroDists[index - 1]);
}
}
else {
rho[i] = interpolation * nonZeroDists[0];
}
}
else if (nonZeroDists.length > 0) {
rho[i] = utils.max(nonZeroDists);
}
for (var n = 0; n < nIter; n++) {
var psum = 0.0;
for (var j = 1; j < distances[i].length; j++) {
var d = distances[i][j] - rho[i];
if (d > 0) {
psum += Math.exp(-(d / mid));
}
else {
psum += 1.0;
}
}
if (Math.abs(psum - target) < SMOOTH_K_TOLERANCE) {
break;
}
if (psum > target) {
hi = mid;
mid = (lo + hi) / 2.0;
}
else {
lo = mid;
if (hi === Infinity) {
mid *= 2;
}
else {
mid = (lo + hi) / 2.0;
}
}
}
result[i] = mid;
if (rho[i] > 0.0) {
var meanIthDistances = utils.mean(ithDistances);
if (result[i] < MIN_K_DIST_SCALE * meanIthDistances) {
result[i] = MIN_K_DIST_SCALE * meanIthDistances;
}
}
else {
var meanDistances = utils.mean(distances.map(utils.mean));
if (result[i] < MIN_K_DIST_SCALE * meanDistances) {
result[i] = MIN_K_DIST_SCALE * meanDistances;
}
}
}
return { sigmas: result, rhos: rho };
};
UMAP.prototype.computeMembershipStrengths = function (knnIndices, knnDistances, sigmas, rhos) {
var nSamples = knnIndices.length;
var nNeighbors = knnIndices[0].length;
var rows = utils.zeros(nSamples * nNeighbors);
var cols = utils.zeros(nSamples * nNeighbors);
var vals = utils.zeros(nSamples * nNeighbors);
for (var i = 0; i < nSamples; i++) {
for (var j = 0; j < nNeighbors; j++) {
var val = 0;
if (knnIndices[i][j] === -1) {
continue;
}
if (knnIndices[i][j] === i) {
val = 0.0;
}
else if (knnDistances[i][j] - rhos[i] <= 0.0) {
val = 1.0;
}
else {
val = Math.exp(-((knnDistances[i][j] - rhos[i]) / sigmas[i]));
}
rows[i * nNeighbors + j] = i;
cols[i * nNeighbors + j] = knnIndices[i][j];
vals[i * nNeighbors + j] = val;
}
}
return { rows: rows, cols: cols, vals: vals };
};
UMAP.prototype.initializeSimplicialSetEmbedding = function () {
var _this = this;
var nEpochs = this.getNEpochs();
var nComponents = this.nComponents;
var graphValues = this.graph.getValues();
var graphMax = 0;
for (var i = 0; i < graphValues.length; i++) {
var value = graphValues[i];
if (graphMax < graphValues[i]) {
graphMax = value;
}
}
var graph = this.graph.map(function (value) {
if (value < graphMax / nEpochs) {
return 0;
}
else {
return value;
}
});
this.embedding = utils.zeros(graph.nRows).map(function () {
return utils.zeros(nComponents).map(function () {
return utils.tauRand(_this.random) * 20 + -10;
});
});
var weights = [];
var head = [];
var tail = [];
for (var i = 0; i < graph.nRows; i++) {
for (var j = 0; j < graph.nCols; j++) {
var value = graph.get(i, j);
if (value) {
weights.push(value);
tail.push(i);
head.push(j);
}
}
}
var epochsPerSample = this.makeEpochsPerSample(weights, nEpochs);
return { head: head, tail: tail, epochsPerSample: epochsPerSample };
};
UMAP.prototype.makeEpochsPerSample = function (weights, nEpochs) {
var result = utils.filled(weights.length, -1.0);
var max = utils.max(weights);
var nSamples = weights.map(function (w) { return (w / max) * nEpochs; });
nSamples.forEach(function (n, i) {
if (n > 0)
result[i] = nEpochs / nSamples[i];
});
return result;
};
UMAP.prototype.assignOptimizationStateParameters = function (state) {
Object.assign(this.optimizationState, state);
};
UMAP.prototype.prepareForOptimizationLoop = function () {
var _a = this, repulsionStrength = _a.repulsionStrength, learningRate = _a.learningRate, negativeSampleRate = _a.negativeSampleRate;
var _b = this.optimizationState, epochsPerSample = _b.epochsPerSample, headEmbedding = _b.headEmbedding, tailEmbedding = _b.tailEmbedding;
var dim = headEmbedding[0].length;
var moveOther = headEmbedding.length === tailEmbedding.length;
var epochsPerNegativeSample = epochsPerSample.map(function (e) { return e / negativeSampleRate; });
var epochOfNextNegativeSample = __spread(epochsPerNegativeSample);
var epochOfNextSample = __spread(epochsPerSample);
this.assignOptimizationStateParameters({
epochOfNextSample: epochOfNextSample,
epochOfNextNegativeSample: epochOfNextNegativeSample,
epochsPerNegativeSample: epochsPerNegativeSample,
moveOther: moveOther,
initialAlpha: learningRate,
alpha: learningRate,
gamma: repulsionStrength,
dim: dim,
});
};
UMAP.prototype.initializeOptimization = function () {
var headEmbedding = this.embedding;
var tailEmbedding = this.embedding;
var _a = this.optimizationState, head = _a.head, tail = _a.tail, epochsPerSample = _a.epochsPerSample;
var nEpochs = this.getNEpochs();
var nVertices = this.graph.nCols;
var _b = findABParams(this.spread, this.minDist), a = _b.a, b = _b.b;
this.assignOptimizationStateParameters({
headEmbedding: headEmbedding,
tailEmbedding: tailEmbedding,
head: head,
tail: tail,
epochsPerSample: epochsPerSample,
a: a,
b: b,
nEpochs: nEpochs,
nVertices: nVertices,
});
};
UMAP.prototype.optimizeLayoutStep = function (n) {
var optimizationState = this.optimizationState;
var head = optimizationState.head, tail = optimizationState.tail, headEmbedding = optimizationState.headEmbedding, tailEmbedding = optimizationState.tailEmbedding, epochsPerSample = optimizationState.epochsPerSample, epochOfNextSample = optimizationState.epochOfNextSample, epochOfNextNegativeSample = optimizationState.epochOfNextNegativeSample, epochsPerNegativeSample = optimizationState.epochsPerNegativeSample, moveOther = optimizationState.moveOther, initialAlpha = optimizationState.initialAlpha, alpha = optimizationState.alpha, gamma = optimizationState.gamma, a = optimizationState.a, b = optimizationState.b, dim = optimizationState.dim, nEpochs = optimizationState.nEpochs, nVertices = optimizationState.nVertices;
var clipValue = 4.0;
for (var i = 0; i < epochsPerSample.length; i++) {
if (epochOfNextSample[i] > n) {
continue;
}
var j = head[i];
var k = tail[i];
var current = headEmbedding[j];
var other = tailEmbedding[k];
var distSquared = rDist(current, other);
var gradCoeff = 0;
if (distSquared > 0) {
gradCoeff = -2.0 * a * b * Math.pow(distSquared, b - 1.0);
gradCoeff /= a * Math.pow(distSquared, b) + 1.0;
}
for (var d = 0; d < dim; d++) {
var gradD = clip(gradCoeff * (current[d] - other[d]), clipValue);
current[d] += gradD * alpha;
if (moveOther) {
other[d] += -gradD * alpha;
}
}
epochOfNextSample[i] += epochsPerSample[i];
var nNegSamples = Math.floor((n - epochOfNextNegativeSample[i]) / epochsPerNegativeSample[i]);
for (var p = 0; p < nNegSamples; p++) {
var k_1 = utils.tauRandInt(nVertices, this.random);
var other_1 = tailEmbedding[k_1];
var distSquared_1 = rDist(current, other_1);
var gradCoeff_1 = 0.0;
if (distSquared_1 > 0.0) {
gradCoeff_1 = 2.0 * gamma * b;
gradCoeff_1 /=
(0.001 + distSquared_1) * (a * Math.pow(distSquared_1, b) + 1);
}
else if (j === k_1) {
continue;
}
for (var d = 0; d < dim; d++) {
var gradD = 4.0;
if (gradCoeff_1 > 0.0) {
gradD = clip(gradCoeff_1 * (current[d] - other_1[d]), clipValue);
}
current[d] += gradD * alpha;
}
}
epochOfNextNegativeSample[i] += nNegSamples * epochsPerNegativeSample[i];
}
optimizationState.alpha = initialAlpha * (1.0 - n / nEpochs);
optimizationState.currentEpoch += 1;
return headEmbedding;
};
UMAP.prototype.optimizeLayoutAsync = function (epochCallback) {
var _this = this;
if (epochCallback === void 0) { epochCallback = function () { return true; }; }
return new Promise(function (resolve, reject) {
var step = function () { return __awaiter(_this, void 0, void 0, function () {
var _a, nEpochs, currentEpoch, epochCompleted, shouldStop, isFinished;
return __generator(this, function (_b) {
try {
_a = this.optimizationState, nEpochs = _a.nEpochs, currentEpoch = _a.currentEpoch;
this.embedding = this.optimizeLayoutStep(currentEpoch);
epochCompleted = this.optimizationState.currentEpoch;
shouldStop = epochCallback(epochCompleted) === false;
isFinished = epochCompleted === nEpochs;
if (!shouldStop && !isFinished) {
step();
}
else {
return [2, resolve(isFinished)];
}
}
catch (err) {
reject(err);
}
return [2];
});
}); };
step();
});
};
UMAP.prototype.optimizeLayout = function (epochCallback) {
if (epochCallback === void 0) { epochCallback = function () { return true; }; }
var isFinished = false;
var embedding = [];
while (!isFinished) {
var _a = this.optimizationState, nEpochs = _a.nEpochs, currentEpoch = _a.currentEpoch;
embedding = this.optimizeLayoutStep(currentEpoch);
var epochCompleted = this.optimizationState.currentEpoch;
var shouldStop = epochCallback(epochCompleted) === false;
isFinished = epochCompleted === nEpochs || shouldStop;
}
return embedding;
};
UMAP.prototype.getNEpochs = function () {
var graph = this.graph;
if (this.nEpochs > 0) {
return this.nEpochs;
}
var length = graph.nRows;
if (length <= 2500) {
return 500;
}
else if (length <= 5000) {
return 400;
}
else if (length <= 7500) {
return 300;
}
else {
return 200;
}
};
return UMAP;
}());
exports.UMAP = UMAP;
function euclidean(x, y) {
var result = 0;
for (var i = 0; i < x.length; i++) {
result += Math.pow((x[i] - y[i]), 2);
}
return Math.sqrt(result);
}
exports.euclidean = euclidean;
function cosine(x, y) {
var result = 0.0;
var normX = 0.0;
var normY = 0.0;
for (var i = 0; i < x.length; i++) {
result += x[i] * y[i];
normX += Math.pow(x[i], 2);
normY += Math.pow(y[i], 2);
}
if (normX === 0 && normY === 0) {
return 0;
}
else if (normX === 0 || normY === 0) {
return 1.0;
}
else {
return 1.0 - result / Math.sqrt(normX * normY);
}
}
exports.cosine = cosine;
var OptimizationState = (function () {
function OptimizationState() {
this.currentEpoch = 0;
this.headEmbedding = [];
this.tailEmbedding = [];
this.head = [];
this.tail = [];
this.epochsPerSample = [];
this.epochOfNextSample = [];
this.epochOfNextNegativeSample = [];
this.epochsPerNegativeSample = [];
this.moveOther = true;
this.initialAlpha = 1.0;
this.alpha = 1.0;
this.gamma = 1.0;
this.a = 1.5769434603113077;
this.b = 0.8950608779109733;
this.dim = 2;
this.nEpochs = 500;
this.nVertices = 0;
}
return OptimizationState;
}());
function clip(x, clipValue) {
if (x > clipValue)
return clipValue;
else if (x < -clipValue)
return -clipValue;
else
return x;
}
function rDist(x, y) {
var result = 0.0;
for (var i = 0; i < x.length; i++) {
result += Math.pow(x[i] - y[i], 2);
}
return result;
}
function findABParams(spread, minDist) {
var curve = function (_a) {
var _b = __read(_a, 2), a = _b[0], b = _b[1];
return function (x) {
return 1.0 / (1.0 + a * Math.pow(x, (2 * b)));
};
};
var xv = utils
.linear(0, spread * 3, 300)
.map(function (val) { return (val < minDist ? 1.0 : val); });
var yv = utils.zeros(xv.length).map(function (val, index) {
var gte = xv[index] >= minDist;
return gte ? Math.exp(-(xv[index] - minDist) / spread) : val;
});
var initialValues = [0.5, 0.5];
var data = { x: xv, y: yv };
var options = {
damping: 1.5,
initialValues: initialValues,
gradientDifference: 10e-2,
maxIterations: 100,
errorTolerance: 10e-3,
};
var parameterValues = ml_levenberg_marquardt_1.default(data, curve, options).parameterValues;
var _a = __read(parameterValues, 2), a = _a[0], b = _a[1];
return { a: a, b: b };
}
exports.findABParams = findABParams;
function fastIntersection(graph, target, unknownDist, farDist) {
if (unknownDist === void 0) { unknownDist = 1.0; }
if (farDist === void 0) { farDist = 5.0; }
return graph.map(function (value, row, col) {
if (target[row] === -1 || target[col] === -1) {
return value * Math.exp(-unknownDist);
}
else if (target[row] !== target[col]) {
return value * Math.exp(-farDist);
}
else {
return value;
}
});
}
exports.fastIntersection = fastIntersection;
function resetLocalConnectivity(simplicialSet) {
simplicialSet = matrix.normalize(simplicialSet, "max");
var transpose = matrix.transpose(simplicialSet);
var prodMatrix = matrix.pairwiseMultiply(transpose, simplicialSet);
simplicialSet = matrix.add(simplicialSet, matrix.subtract(transpose, prodMatrix));
return matrix.eliminateZeros(simplicialSet);
}
exports.resetLocalConnectivity = resetLocalConnectivity;
function initTransform(indices, weights, embedding) {
var result = utils
.zeros(indices.length)
.map(function (z) { return utils.zeros(embedding[0].length); });
for (var i = 0; i < indices.length; i++) {
for (var j = 0; j < indices[0].length; j++) {
for (var d = 0; d < embedding[0].length; d++) {
var a = indices[i][j];
result[i][d] += weights[i][j] * embedding[a][d];
}
}
}
return result;
}
exports.initTransform = initTransform;
/***/ }),
/* 7 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var __values = (this && this.__values) || function (o) {
var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0;
if (m) return m.call(o);
return {
next: function () {
if (o && i >= o.length) o = void 0;
return { value: o && o[i++], done: !o };
}
};
};
var __importStar = (this && this.__importStar) || function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k];
result["default"] = mod;
return result;
};
Object.defineProperty(exports, "__esModule", { value: true });
var heap = __importStar(__webpack_require__(2));
var matrix = __importStar(__webpack_require__(3));
var tree = __importStar(__webpack_require__(4));
var utils = __importStar(__webpack_require__(1));
function makeNNDescent(distanceFn, random) {
return function nNDescent(data, leafArray, nNeighbors, nIters, maxCandidates, delta, rho, rpTreeInit) {
if (nIters === void 0) { nIters = 10; }
if (maxCandidates === void 0) { maxCandidates = 50; }
if (delta === void 0) { delta = 0.001; }
if (rho === void 0) { rho = 0.5; }
if (rpTreeInit === void 0) { rpTreeInit = true; }
var nVertices = data.length;
var currentGraph = heap.makeHeap(data.length, nNeighbors);
for (var i = 0; i < data.length; i++) {
var indices = heap.rejectionSample(nNeighbors, data.length, random);
for (var j = 0; j < indices.length; j++) {
var d = distanceFn(data[i], data[indices[j]]);
heap.heapPush(currentGraph, i, d, indices[j], 1);
heap.heapPush(currentGraph, indices[j], d, i, 1);
}
}
if (rpTreeInit) {
for (var n = 0; n < leafArray.length; n++) {
for (var i = 0; i < leafArray[n].length; i++) {
if (leafArray[n][i] < 0) {
break;
}
for (var j = i + 1; j < leafArray[n].length; j++) {
if (leafArray[n][j] < 0) {
break;
}
var d = distanceFn(data[leafArray[n][i]], data[leafArray[n][j]]);
heap.heapPush(currentGraph, leafArray[n][i], d, leafArray[n][j], 1);
heap.heapPush(currentGraph, leafArray[n][j], d, leafArray[n][i], 1);
}
}
}
}
for (var n = 0; n < nIters; n++) {
var candidateNeighbors = heap.buildCandidates(currentGraph, nVertices, nNeighbors, maxCandidates, random);
var c = 0;
for (var i = 0; i < nVertices; i++) {
for (var j = 0; j < maxCandidates; j++) {
var p = Math.floor(candidateNeighbors[0][i][j]);
if (p < 0 || utils.tauRand(random) < rho) {
continue;
}
for (var k = 0; k < maxCandidates; k++) {
var q = Math.floor(candidateNeighbors[0][i][k]);
var cj = candidateNeighbors[2][i][j];
var ck = candidateNeighbors[2][i][k];
if (q < 0 || (!cj && !ck)) {
continue;
}
var d = distanceFn(data[p], data[q]);
c += heap.heapPush(currentGraph, p, d, q, 1);
c += heap.heapPush(currentGraph, q, d, p, 1);
}
}
}
if (c <= delta * nNeighbors * data.length) {
break;
}
}
var sorted = heap.deheapSort(currentGraph);
return sorted;
};
}
exports.makeNNDescent = makeNNDescent;
function makeInitializations(distanceFn) {
function initFromRandom(nNeighbors, data, queryPoints, _heap, random) {
for (var i = 0; i < queryPoints.length; i++) {
var indices = utils.rejectionSample(nNeighbors, data.length, random);
for (var j = 0; j < indices.length; j++) {
if (indices[j] < 0) {
continue;
}
var d = distanceFn(data[indices[j]], queryPoints[i]);
heap.heapPush(_heap, i, d, indices[j], 1);
}
}
}
function initFromTree(_tree, data, queryPoints, _heap, random) {
for (var i = 0; i < queryPoints.length; i++) {
var indices = tree.searchFlatTree(queryPoints[i], _tree, random);
for (var j = 0; j < indices.length; j++) {
if (indices[j] < 0) {
return;
}
var d = distanceFn(data[indices[j]], queryPoints[i]);
heap.heapPush(_heap, i, d, indices[j], 1);
}
}
return;
}
return { initFromRandom: initFromRandom, initFromTree: initFromTree };
}
exports.makeInitializations = makeInitializations;
function makeInitializedNNSearch(distanceFn) {
return function nnSearchFn(data, graph, initialization, queryPoints) {
var e_1, _a;
var _b = matrix.getCSR(graph), indices = _b.indices, indptr = _b.indptr;
for (var i = 0; i < queryPoints.length; i++) {
var tried = new Set(initialization[0][i]);
while (true) {
var vertex = heap.smallestFlagged(initialization, i);
if (vertex === -1) {
break;
}
var candidates = indices.slice(indptr[vertex], indptr[vertex + 1]);
try {
for (var candidates_1 = __values(candidates), candidates_1_1 = candidates_1.next(); !candidates_1_1.done; candidates_1_1 = candidates_1.next()) {
var candidate = candidates_1_1.value;
if (candidate === vertex ||
candidate === -1 ||
tried.has(candidate)) {
continue;
}
var d = distanceFn(data[candidate], queryPoints[i]);
heap.uncheckedHeapPush(initialization, i, d, candidate, 1);
tried.add(candidate);
}
}
catch (e_1_1) { e_1 = { error: e_1_1 }; }
finally {
try {
if (candidates_1_1 && !candidates_1_1.done && (_a = candidates_1.return)) _a.call(candidates_1);
}
finally { if (e_1) throw e_1.error; }
}
}
}
return initialization;
};
}
exports.makeInitializedNNSearch = makeInitializedNNSearch;
function initializeSearch(forest, data, queryPoints, nNeighbors, initFromRandom, initFromTree, random) {
var e_2, _a;
var results = heap.makeHeap(queryPoints.length, nNeighbors);
initFromRandom(nNeighbors, data, queryPoints, results, random);
if (forest) {
try {
for (var forest_1 = __values(forest), forest_1_1 = forest_1.next(); !forest_1_1.done; forest_1_1 = forest_1.next()) {
var tree_1 = forest_1_1.value;
initFromTree(tree_1, data, queryPoints, results, random);
}
}
catch (e_2_1) { e_2 = { error: e_2_1 }; }
finally {
try {
if (forest_1_1 && !forest_1_1.done && (_a = forest_1.return)) _a.call(forest_1);
}
finally { if (e_2) throw e_2.error; }
}
}
return results;
}
exports.initializeSearch = initializeSearch;
/***/ }),
/* 8 */
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var mlMatrix = __webpack_require__(9);
/**
* Calculate current error
* @ignore
* @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]
* @param {Array<number>} parameters - Array of current parameter values
* @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter
* @return {number}
*/
function errorCalculation(
data,
parameters,
parameterizedFunction
) {
var error = 0;
const func = parameterizedFunction(parameters);
for (var i = 0; i < data.x.length; i++) {
error += Math.abs(data.y[i] - func(data.x[i]));
}
return error;
}
/**
* Difference of the matrix function over the parameters
* @ignore
* @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]
* @param {Array<number>} evaluatedData - Array of previous evaluated function values
* @param {Array<number>} params - Array of previous parameter values
* @param {number} gradientDifference - Adjustment for decrease the damping parameter
* @param {function} paramFunction - The parameters and returns a function with the independent variable as a parameter
* @return {Matrix}
*/
function gradientFunction(
data,
evaluatedData,
params,
gradientDifference,
paramFunction
) {
const n = params.length;
const m = data.x.length;
var ans = new Array(n);
for (var param = 0; param < n; param++) {
ans[param] = new Array(m);
var auxParams = params.concat();
auxParams[param] += gradientDifference;
var funcParam = paramFunction(auxParams);
for (var point = 0; point < m; point++) {
ans[param][point] = evaluatedData[point] - funcParam(data.x[point]);
}
}
return new mlMatrix.Matrix(ans);
}
/**
* Matrix function over the samples
* @ignore
* @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]
* @param {Array<number>} evaluatedData - Array of previous evaluated function values
* @return {Matrix}
*/
function matrixFunction(data, evaluatedData) {
const m = data.x.length;
var ans = new Array(m);
for (var point = 0; point < m; point++) {
ans[point] = data.y[point] - evaluatedData[point];
}
return new mlMatrix.Matrix([ans]);
}
/**
* Iteration for Levenberg-Marquardt
* @ignore
* @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]
* @param {Array<number>} params - Array of previous parameter values
* @param {number} damping - Levenberg-Marquardt parameter
* @param {number} gradientDifference - Adjustment for decrease the damping parameter
* @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter
* @return {Array<number>}
*/
function step(
data,
params,
damping,
gradientDifference,
parameterizedFunction
) {
var identity = mlMatrix.Matrix.eye(params.length).mul(
damping * gradientDifference * gradientDifference
);
var l = data.x.length;
var evaluatedData = new Array(l);
const func = parameterizedFunction(params);
for (var i = 0; i < l; i++) {
evaluatedData[i] = func(data.x[i]);
}
var gradientFunc = gradientFunction(
data,
evaluatedData,
params,
gradientDifference,
parameterizedFunction
);
var matrixFunc = matrixFunction(data, evaluatedData).transposeView();
var inverseMatrix = mlMatrix.inverse(
identity.add(gradientFunc.mmul(gradientFunc.transposeView()))
);
params = new mlMatrix.Matrix([params]);
params = params.sub(
inverseMatrix
.mmul(gradientFunc)
.mmul(matrixFunc)
.mul(gradientDifference)
.transposeView()
);
return params.to1DArray();
}
/**
* Curve fitting algorithm
* @param {{x:Array<number>, y:Array<number>}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ]
* @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter
* @param {object} [options] - Options object
* @param {number} [options.damping] - Levenberg-Marquardt parameter
* @param {number} [options.gradientDifference = 10e-2] - Adjustment for decrease the damping parameter
* @param {Array<number>} [options.initialValues] - Array of initial parameter values
* @param {number} [options.maxIterations = 100] - Maximum of allowed iterations
* @param {number} [options.errorTolerance = 10e-3] - Minimum uncertainty allowed for each point
* @return {{parameterValues: Array<number>, parameterError: number, iterations: number}}
*/
function levenbergMarquardt(
data,
parameterizedFunction,
options = {}
) {
let {
maxIterations = 100,
gradientDifference = 10e-2,
damping = 0,
errorTolerance = 10e-3,
initialValues
} = options;
if (damping <= 0) {
throw new Error('The damping option must be a positive number');
} else if (!data.x || !data.y) {
throw new Error('The data parameter must have x and y elements');
} else if (
!Array.isArray(data.x) ||
data.x.length < 2 ||
!Array.isArray(data.y) ||
data.y.length < 2
) {
throw new Error(
'The data parameter elements must be an array with more than 2 points'
);
} else {
let dataLen = data.x.length;
if (dataLen !== data.y.length) {
throw new Error('The data parameter elements must have the same size');
}
}
var parameters =
initialValues || new Array(parameterizedFunction.length).fill(1);
if (!Array.isArray(parameters)) {
throw new Error('initialValues must be an array');
}
var error = errorCalculation(data, parameters, parameterizedFunction);
var converged = error <= errorTolerance;
for (
var iteration = 0;
iteration < maxIterations && !converged;
iteration++
) {
parameters = step(
data,
parameters,
damping,
gradientDifference,
parameterizedFunction
);
error = errorCalculation(data, parameters, parameterizedFunction);
converged = error <= errorTolerance;
}
return {
parameterValues: parameters,
parameterError: error,
iterations: iteration
};
}
module.exports = levenbergMarquardt;
/***/ }),
/* 9 */
/***/ (function(module, __webpack_exports__, __webpack_require__) {
"use strict";
__webpack_require__.r(__webpack_exports__);
// EXTERNAL MODULE: ./node_modules/is-any-array/src/index.js
var src = __webpack_require__(0);
var src_default = /*#__PURE__*/__webpack_require__.n(src);
// CONCATENATED MODULE: ./node_modules/ml-array-max/lib-es6/index.js
/**
* Computes the maximum of the given values
* @param {Array<number>} input
* @return {number}
*/
function lib_es6_max(input) {
if (!src_default()(input)) {
throw new TypeError('input must be an array');
}
if (input.length === 0) {
throw new TypeError('input must not be empty');
}
var max = input[0];
for (var i = 1; i < input.length; i++) {
if (input[i] > max) max = input[i];
}
return max;
}
/* harmony default export */ var lib_es6 = (lib_es6_max);
// CONCATENATED MODULE: ./node_modules/ml-array-min/lib-es6/index.js
/**
* Computes the minimum of the given values
* @param {Array<number>} input
* @return {number}
*/
function lib_es6_min(input) {
if (!src_default()(input)) {
throw new TypeError('input must be an array');
}
if (input.length === 0) {
throw new TypeError('input must not be empty');
}
var min = input[0];
for (var i = 1; i < input.length; i++) {
if (input[i] < min) min = input[i];
}
return min;
}
/* harmony default export */ var ml_array_min_lib_es6 = (lib_es6_min);
// CONCATENATED MODULE: ./node_modules/ml-array-rescale/lib-es6/index.js
function rescale(input) {
var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {};
if (!src_default()(input)) {
throw new TypeError('input must be an array');
} else if (input.length === 0) {
throw new TypeError('input must not be empty');
}
var output;
if (options.output !== undefined) {
if (!src_default()(options.output)) {
throw new TypeError('output option must be an array if specified');
}
output = options.output;
} else {
output = new Array(input.length);
}
var currentMin = ml_array_min_lib_es6(input);
var currentMax = lib_es6(input);
if (currentMin === currentMax) {
throw new RangeError('minimum and maximum input values are equal. Cannot rescale a constant array');
}
var _options$min = options.min,
minValue = _options$min === void 0 ? options.autoMinMax ? currentMin : 0 : _options$min,
_options$max = options.max,
maxValue = _options$max === void 0 ? options.autoMinMax ? currentMax : 1 : _options$max;
if (minValue >= maxValue) {
throw new RangeError('min option must be smaller than max option');
}
var factor = (maxValue - minValue) / (currentMax - currentMin);
for (var i = 0; i < input.length; i++) {
output[i] = (input[i] - currentMin) * factor + minValue;
}
return output;
}
/* harmony default export */ var ml_array_rescale_lib_es6 = (rescale);
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/lu.js
/**
* @class LuDecomposition
* @link https://github.com/lutzroeder/Mapack/blob/master/Source/LuDecomposition.cs
* @param {Matrix} matrix
*/
class lu_LuDecomposition {
constructor(matrix) {
matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix);
var lu = matrix.clone();
var rows = lu.rows;
var columns = lu.columns;
var pivotVector = new Array(rows);
var pivotSign = 1;
var i, j, k, p, s, t, v;
var LUcolj, kmax;
for (i = 0; i < rows; i++) {
pivotVector[i] = i;
}
LUcolj = new Array(rows);
for (j = 0; j < columns; j++) {
for (i = 0; i < rows; i++) {
LUcolj[i] = lu.get(i, j);
}
for (i = 0; i < rows; i++) {
kmax = Math.min(i, j);
s = 0;
for (k = 0; k < kmax; k++) {
s += lu.get(i, k) * LUcolj[k];
}
LUcolj[i] -= s;
lu.set(i, j, LUcolj[i]);
}
p = j;
for (i = j + 1; i < rows; i++) {
if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {
p = i;
}
}
if (p !== j) {
for (k = 0; k < columns; k++) {
t = lu.get(p, k);
lu.set(p, k, lu.get(j, k));
lu.set(j, k, t);
}
v = pivotVector[p];
pivotVector[p] = pivotVector[j];
pivotVector[j] = v;
pivotSign = -pivotSign;
}
if (j < rows && lu.get(j, j) !== 0) {
for (i = j + 1; i < rows; i++) {
lu.set(i, j, lu.get(i, j) / lu.get(j, j));
}
}
}
this.LU = lu;
this.pivotVector = pivotVector;
this.pivotSign = pivotSign;
}
/**
*
* @return {boolean}
*/
isSingular() {
var data = this.LU;
var col = data.columns;
for (var j = 0; j < col; j++) {
if (data[j][j] === 0) {
return true;
}
}
return false;
}
/**
*
* @param {Matrix} value
* @return {Matrix}
*/
solve(value) {
value = matrix_Matrix.checkMatrix(value);
var lu = this.LU;
var rows = lu.rows;
if (rows !== value.rows) {
throw new Error('Invalid matrix dimensions');
}
if (this.isSingular()) {
throw new Error('LU matrix is singular');
}
var count = value.columns;
var X = value.subMatrixRow(this.pivotVector, 0, count - 1);
var columns = lu.columns;
var i, j, k;
for (k = 0; k < columns; k++) {
for (i = k + 1; i < columns; i++) {
for (j = 0; j < count; j++) {
X[i][j] -= X[k][j] * lu[i][k];
}
}
}
for (k = columns - 1; k >= 0; k--) {
for (j = 0; j < count; j++) {
X[k][j] /= lu[k][k];
}
for (i = 0; i < k; i++) {
for (j = 0; j < count; j++) {
X[i][j] -= X[k][j] * lu[i][k];
}
}
}
return X;
}
/**
*
* @return {number}
*/
get determinant() {
var data = this.LU;
if (!data.isSquare()) {
throw new Error('Matrix must be square');
}
var determinant = this.pivotSign;
var col = data.columns;
for (var j = 0; j < col; j++) {
determinant *= data[j][j];
}
return determinant;
}
/**
*
* @return {Matrix}
*/
get lowerTriangularMatrix() {
var data = this.LU;
var rows = data.rows;
var columns = data.columns;
var X = new matrix_Matrix(rows, columns);
for (var i = 0; i < rows; i++) {
for (var j = 0; j < columns; j++) {
if (i > j) {
X[i][j] = data[i][j];
} else if (i === j) {
X[i][j] = 1;
} else {
X[i][j] = 0;
}
}
}
return X;
}
/**
*
* @return {Matrix}
*/
get upperTriangularMatrix() {
var data = this.LU;
var rows = data.rows;
var columns = data.columns;
var X = new matrix_Matrix(rows, columns);
for (var i = 0; i < rows; i++) {
for (var j = 0; j < columns; j++) {
if (i <= j) {
X[i][j] = data[i][j];
} else {
X[i][j] = 0;
}
}
}
return X;
}
/**
*
* @return {Array<number>}
*/
get pivotPermutationVector() {
return this.pivotVector.slice();
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/util.js
function hypotenuse(a, b) {
var r = 0;
if (Math.abs(a) > Math.abs(b)) {
r = b / a;
return Math.abs(a) * Math.sqrt(1 + r * r);
}
if (b !== 0) {
r = a / b;
return Math.abs(b) * Math.sqrt(1 + r * r);
}
return 0;
}
function getFilled2DArray(rows, columns, value) {
var array = new Array(rows);
for (var i = 0; i < rows; i++) {
array[i] = new Array(columns);
for (var j = 0; j < columns; j++) {
array[i][j] = value;
}
}
return array;
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/svd.js
/**
* @class SingularValueDecomposition
* @see https://github.com/accord-net/framework/blob/development/Sources/Accord.Math/Decompositions/SingularValueDecomposition.cs
* @param {Matrix} value
* @param {object} [options]
* @param {boolean} [options.computeLeftSingularVectors=true]
* @param {boolean} [options.computeRightSingularVectors=true]
* @param {boolean} [options.autoTranspose=false]
*/
class svd_SingularValueDecomposition {
constructor(value, options = {}) {
value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value);
var m = value.rows;
var n = value.columns;
const {
computeLeftSingularVectors = true,
computeRightSingularVectors = true,
autoTranspose = false
} = options;
var wantu = Boolean(computeLeftSingularVectors);
var wantv = Boolean(computeRightSingularVectors);
var swapped = false;
var a;
if (m < n) {
if (!autoTranspose) {
a = value.clone();
// eslint-disable-next-line no-console
console.warn(
'Computing SVD on a matrix with more columns than rows. Consider enabling autoTranspose'
);
} else {
a = value.transpose();
m = a.rows;
n = a.columns;
swapped = true;
var aux = wantu;
wantu = wantv;
wantv = aux;
}
} else {
a = value.clone();
}
var nu = Math.min(m, n);
var ni = Math.min(m + 1, n);
var s = new Array(ni);
var U = getFilled2DArray(m, nu, 0);
var V = getFilled2DArray(n, n, 0);
var e = new Array(n);
var work = new Array(m);
var si = new Array(ni);
for (let i = 0; i < ni; i++) si[i] = i;
var nct = Math.min(m - 1, n);
var nrt = Math.max(0, Math.min(n - 2, m));
var mrc = Math.max(nct, nrt);
for (let k = 0; k < mrc; k++) {
if (k < nct) {
s[k] = 0;
for (let i = k; i < m; i++) {
s[k] = hypotenuse(s[k], a[i][k]);
}
if (s[k] !== 0) {
if (a[k][k] < 0) {
s[k] = -s[k];
}
for (let i = k; i < m; i++) {
a[i][k] /= s[k];
}
a[k][k] += 1;
}
s[k] = -s[k];
}
for (let j = k + 1; j < n; j++) {
if (k < nct && s[k] !== 0) {
let t = 0;
for (let i = k; i < m; i++) {
t += a[i][k] * a[i][j];
}
t = -t / a[k][k];
for (let i = k; i < m; i++) {
a[i][j] += t * a[i][k];
}
}
e[j] = a[k][j];
}
if (wantu && k < nct) {
for (let i = k; i < m; i++) {
U[i][k] = a[i][k];
}
}
if (k < nrt) {
e[k] = 0;
for (let i = k + 1; i < n; i++) {
e[k] = hypotenuse(e[k], e[i]);
}
if (e[k] !== 0) {
if (e[k + 1] < 0) {
e[k] = 0 - e[k];
}
for (let i = k + 1; i < n; i++) {
e[i] /= e[k];
}
e[k + 1] += 1;
}
e[k] = -e[k];
if (k + 1 < m && e[k] !== 0) {
for (let i = k + 1; i < m; i++) {
work[i] = 0;
}
for (let i = k + 1; i < m; i++) {
for (let j = k + 1; j < n; j++) {
work[i] += e[j] * a[i][j];
}
}
for (let j = k + 1; j < n; j++) {
let t = -e[j] / e[k + 1];
for (let i = k + 1; i < m; i++) {
a[i][j] += t * work[i];
}
}
}
if (wantv) {
for (let i = k + 1; i < n; i++) {
V[i][k] = e[i];
}
}
}
}
let p = Math.min(n, m + 1);
if (nct < n) {
s[nct] = a[nct][nct];
}
if (m < p) {
s[p - 1] = 0;
}
if (nrt + 1 < p) {
e[nrt] = a[nrt][p - 1];
}
e[p - 1] = 0;
if (wantu) {
for (let j = nct; j < nu; j++) {
for (let i = 0; i < m; i++) {
U[i][j] = 0;
}
U[j][j] = 1;
}
for (let k = nct - 1; k >= 0; k--) {
if (s[k] !== 0) {
for (let j = k + 1; j < nu; j++) {
let t = 0;
for (let i = k; i < m; i++) {
t += U[i][k] * U[i][j];
}
t = -t / U[k][k];
for (let i = k; i < m; i++) {
U[i][j] += t * U[i][k];
}
}
for (let i = k; i < m; i++) {
U[i][k] = -U[i][k];
}
U[k][k] = 1 + U[k][k];
for (let i = 0; i < k - 1; i++) {
U[i][k] = 0;
}
} else {
for (let i = 0; i < m; i++) {
U[i][k] = 0;
}
U[k][k] = 1;
}
}
}
if (wantv) {
for (let k = n - 1; k >= 0; k--) {
if (k < nrt && e[k] !== 0) {
for (let j = k + 1; j < n; j++) {
let t = 0;
for (let i = k + 1; i < n; i++) {
t += V[i][k] * V[i][j];
}
t = -t / V[k + 1][k];
for (let i = k + 1; i < n; i++) {
V[i][j] += t * V[i][k];
}
}
}
for (let i = 0; i < n; i++) {
V[i][k] = 0;
}
V[k][k] = 1;
}
}
var pp = p - 1;
var iter = 0;
var eps = Number.EPSILON;
while (p > 0) {
let k, kase;
for (k = p - 2; k >= -1; k--) {
if (k === -1) {
break;
}
const alpha =
Number.MIN_VALUE + eps * Math.abs(s[k] + Math.abs(s[k + 1]));
if (Math.abs(e[k]) <= alpha || Number.isNaN(e[k])) {
e[k] = 0;
break;
}
}
if (k === p - 2) {
kase = 4;
} else {
let ks;
for (ks = p - 1; ks >= k; ks--) {
if (ks === k) {
break;
}
let t =
(ks !== p ? Math.abs(e[ks]) : 0) +
(ks !== k + 1 ? Math.abs(e[ks - 1]) : 0);
if (Math.abs(s[ks]) <= eps * t) {
s[ks] = 0;
break;
}
}
if (ks === k) {
kase = 3;
} else if (ks === p - 1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
switch (kase) {
case 1: {
let f = e[p - 2];
e[p - 2] = 0;
for (let j = p - 2; j >= k; j--) {
let t = hypotenuse(s[j], f);
let cs = s[j] / t;
let sn = f / t;
s[j] = t;
if (j !== k) {
f = -sn * e[j - 1];
e[j - 1] = cs * e[j - 1];
}
if (wantv) {
for (let i = 0; i < n; i++) {
t = cs * V[i][j] + sn * V[i][p - 1];
V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
V[i][j] = t;
}
}
}
break;
}
case 2: {
let f = e[k - 1];
e[k - 1] = 0;
for (let j = k; j < p; j++) {
let t = hypotenuse(s[j], f);
let cs = s[j] / t;
let sn = f / t;
s[j] = t;
f = -sn * e[j];
e[j] = cs * e[j];
if (wantu) {
for (let i = 0; i < m; i++) {
t = cs * U[i][j] + sn * U[i][k - 1];
U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
U[i][j] = t;
}
}
}
break;
}
case 3: {
const scale = Math.max(
Math.abs(s[p - 1]),
Math.abs(s[p - 2]),
Math.abs(e[p - 2]),
Math.abs(s[k]),
Math.abs(e[k])
);
const sp = s[p - 1] / scale;
const spm1 = s[p - 2] / scale;
const epm1 = e[p - 2] / scale;
const sk = s[k] / scale;
const ek = e[k] / scale;
const b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2;
const c = sp * epm1 * (sp * epm1);
let shift = 0;
if (b !== 0 || c !== 0) {
if (b < 0) {
shift = 0 - Math.sqrt(b * b + c);
} else {
shift = Math.sqrt(b * b + c);
}
shift = c / (b + shift);
}
let f = (sk + sp) * (sk - sp) + shift;
let g = sk * ek;
for (let j = k; j < p - 1; j++) {
let t = hypotenuse(f, g);
if (t === 0) t = Number.MIN_VALUE;
let cs = f / t;
let sn = g / t;
if (j !== k) {
e[j - 1] = t;
}
f = cs * s[j] + sn * e[j];
e[j] = cs * e[j] - sn * s[j];
g = sn * s[j + 1];
s[j + 1] = cs * s[j + 1];
if (wantv) {
for (let i = 0; i < n; i++) {
t = cs * V[i][j] + sn * V[i][j + 1];
V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
V[i][j] = t;
}
}
t = hypotenuse(f, g);
if (t === 0) t = Number.MIN_VALUE;
cs = f / t;
sn = g / t;
s[j] = t;
f = cs * e[j] + sn * s[j + 1];
s[j + 1] = -sn * e[j] + cs * s[j + 1];
g = sn * e[j + 1];
e[j + 1] = cs * e[j + 1];
if (wantu && j < m - 1) {
for (let i = 0; i < m; i++) {
t = cs * U[i][j] + sn * U[i][j + 1];
U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
U[i][j] = t;
}
}
}
e[p - 2] = f;
iter = iter + 1;
break;
}
case 4: {
if (s[k] <= 0) {
s[k] = s[k] < 0 ? -s[k] : 0;
if (wantv) {
for (let i = 0; i <= pp; i++) {
V[i][k] = -V[i][k];
}
}
}
while (k < pp) {
if (s[k] >= s[k + 1]) {
break;
}
let t = s[k];
s[k] = s[k + 1];
s[k + 1] = t;
if (wantv && k < n - 1) {
for (let i = 0; i < n; i++) {
t = V[i][k + 1];
V[i][k + 1] = V[i][k];
V[i][k] = t;
}
}
if (wantu && k < m - 1) {
for (let i = 0; i < m; i++) {
t = U[i][k + 1];
U[i][k + 1] = U[i][k];
U[i][k] = t;
}
}
k++;
}
iter = 0;
p--;
break;
}
// no default
}
}
if (swapped) {
var tmp = V;
V = U;
U = tmp;
}
this.m = m;
this.n = n;
this.s = s;
this.U = U;
this.V = V;
}
/**
* Solve a problem of least square (Ax=b) by using the SVD. Useful when A is singular. When A is not singular, it would be better to use qr.solve(value).
* Example : We search to approximate x, with A matrix shape m*n, x vector size n, b vector size m (m > n). We will use :
* var svd = SingularValueDecomposition(A);
* var x = svd.solve(b);
* @param {Matrix} value - Matrix 1D which is the vector b (in the equation Ax = b)
* @return {Matrix} - The vector x
*/
solve(value) {
var Y = value;
var e = this.threshold;
var scols = this.s.length;
var Ls = matrix_Matrix.zeros(scols, scols);
for (let i = 0; i < scols; i++) {
if (Math.abs(this.s[i]) <= e) {
Ls[i][i] = 0;
} else {
Ls[i][i] = 1 / this.s[i];
}
}
var U = this.U;
var V = this.rightSingularVectors;
var VL = V.mmul(Ls);
var vrows = V.rows;
var urows = U.length;
var VLU = matrix_Matrix.zeros(vrows, urows);
for (let i = 0; i < vrows; i++) {
for (let j = 0; j < urows; j++) {
let sum = 0;
for (let k = 0; k < scols; k++) {
sum += VL[i][k] * U[j][k];
}
VLU[i][j] = sum;
}
}
return VLU.mmul(Y);
}
/**
*
* @param {Array<number>} value
* @return {Matrix}
*/
solveForDiagonal(value) {
return this.solve(matrix_Matrix.diag(value));
}
/**
* Get the inverse of the matrix. We compute the inverse of a matrix using SVD when this matrix is singular or ill-conditioned. Example :
* var svd = SingularValueDecomposition(A);
* var inverseA = svd.inverse();
* @return {Matrix} - The approximation of the inverse of the matrix
*/
inverse() {
var V = this.V;
var e = this.threshold;
var vrows = V.length;
var vcols = V[0].length;
var X = new matrix_Matrix(vrows, this.s.length);
for (let i = 0; i < vrows; i++) {
for (let j = 0; j < vcols; j++) {
if (Math.abs(this.s[j]) > e) {
X[i][j] = V[i][j] / this.s[j];
} else {
X[i][j] = 0;
}
}
}
var U = this.U;
var urows = U.length;
var ucols = U[0].length;
var Y = new matrix_Matrix(vrows, urows);
for (let i = 0; i < vrows; i++) {
for (let j = 0; j < urows; j++) {
let sum = 0;
for (let k = 0; k < ucols; k++) {
sum += X[i][k] * U[j][k];
}
Y[i][j] = sum;
}
}
return Y;
}
/**
*
* @return {number}
*/
get condition() {
return this.s[0] / this.s[Math.min(this.m, this.n) - 1];
}
/**
*
* @return {number}
*/
get norm2() {
return this.s[0];
}
/**
*
* @return {number}
*/
get rank() {
var tol = Math.max(this.m, this.n) * this.s[0] * Number.EPSILON;
var r = 0;
var s = this.s;
for (var i = 0, ii = s.length; i < ii; i++) {
if (s[i] > tol) {
r++;
}
}
return r;
}
/**
*
* @return {Array<number>}
*/
get diagonal() {
return this.s;
}
/**
*
* @return {number}
*/
get threshold() {
return Number.EPSILON / 2 * Math.max(this.m, this.n) * this.s[0];
}
/**
*
* @return {Matrix}
*/
get leftSingularVectors() {
if (!matrix_Matrix.isMatrix(this.U)) {
this.U = new matrix_Matrix(this.U);
}
return this.U;
}
/**
*
* @return {Matrix}
*/
get rightSingularVectors() {
if (!matrix_Matrix.isMatrix(this.V)) {
this.V = new matrix_Matrix(this.V);
}
return this.V;
}
/**
*
* @return {Matrix}
*/
get diagonalMatrix() {
return matrix_Matrix.diag(this.s);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/util.js
/**
* @private
* Check that a row index is not out of bounds
* @param {Matrix} matrix
* @param {number} index
* @param {boolean} [outer]
*/
function checkRowIndex(matrix, index, outer) {
var max = outer ? matrix.rows : matrix.rows - 1;
if (index < 0 || index > max) {
throw new RangeError('Row index out of range');
}
}
/**
* @private
* Check that a column index is not out of bounds
* @param {Matrix} matrix
* @param {number} index
* @param {boolean} [outer]
*/
function checkColumnIndex(matrix, index, outer) {
var max = outer ? matrix.columns : matrix.columns - 1;
if (index < 0 || index > max) {
throw new RangeError('Column index out of range');
}
}
/**
* @private
* Check that the provided vector is an array with the right length
* @param {Matrix} matrix
* @param {Array|Matrix} vector
* @return {Array}
* @throws {RangeError}
*/
function checkRowVector(matrix, vector) {
if (vector.to1DArray) {
vector = vector.to1DArray();
}
if (vector.length !== matrix.columns) {
throw new RangeError(
'vector size must be the same as the number of columns'
);
}
return vector;
}
/**
* @private
* Check that the provided vector is an array with the right length
* @param {Matrix} matrix
* @param {Array|Matrix} vector
* @return {Array}
* @throws {RangeError}
*/
function checkColumnVector(matrix, vector) {
if (vector.to1DArray) {
vector = vector.to1DArray();
}
if (vector.length !== matrix.rows) {
throw new RangeError('vector size must be the same as the number of rows');
}
return vector;
}
function checkIndices(matrix, rowIndices, columnIndices) {
return {
row: checkRowIndices(matrix, rowIndices),
column: checkColumnIndices(matrix, columnIndices)
};
}
function checkRowIndices(matrix, rowIndices) {
if (typeof rowIndices !== 'object') {
throw new TypeError('unexpected type for row indices');
}
var rowOut = rowIndices.some((r) => {
return r < 0 || r >= matrix.rows;
});
if (rowOut) {
throw new RangeError('row indices are out of range');
}
if (!Array.isArray(rowIndices)) rowIndices = Array.from(rowIndices);
return rowIndices;
}
function checkColumnIndices(matrix, columnIndices) {
if (typeof columnIndices !== 'object') {
throw new TypeError('unexpected type for column indices');
}
var columnOut = columnIndices.some((c) => {
return c < 0 || c >= matrix.columns;
});
if (columnOut) {
throw new RangeError('column indices are out of range');
}
if (!Array.isArray(columnIndices)) columnIndices = Array.from(columnIndices);
return columnIndices;
}
function checkRange(matrix, startRow, endRow, startColumn, endColumn) {
if (arguments.length !== 5) {
throw new RangeError('expected 4 arguments');
}
checkNumber('startRow', startRow);
checkNumber('endRow', endRow);
checkNumber('startColumn', startColumn);
checkNumber('endColumn', endColumn);
if (
startRow > endRow ||
startColumn > endColumn ||
startRow < 0 ||
startRow >= matrix.rows ||
endRow < 0 ||
endRow >= matrix.rows ||
startColumn < 0 ||
startColumn >= matrix.columns ||
endColumn < 0 ||
endColumn >= matrix.columns
) {
throw new RangeError('Submatrix indices are out of range');
}
}
function getRange(from, to) {
var arr = new Array(to - from + 1);
for (var i = 0; i < arr.length; i++) {
arr[i] = from + i;
}
return arr;
}
function sumByRow(matrix) {
var sum = matrix_Matrix.zeros(matrix.rows, 1);
for (var i = 0; i < matrix.rows; ++i) {
for (var j = 0; j < matrix.columns; ++j) {
sum.set(i, 0, sum.get(i, 0) + matrix.get(i, j));
}
}
return sum;
}
function sumByColumn(matrix) {
var sum = matrix_Matrix.zeros(1, matrix.columns);
for (var i = 0; i < matrix.rows; ++i) {
for (var j = 0; j < matrix.columns; ++j) {
sum.set(0, j, sum.get(0, j) + matrix.get(i, j));
}
}
return sum;
}
function sumAll(matrix) {
var v = 0;
for (var i = 0; i < matrix.rows; i++) {
for (var j = 0; j < matrix.columns; j++) {
v += matrix.get(i, j);
}
}
return v;
}
function checkNumber(name, value) {
if (typeof value !== 'number') {
throw new TypeError(`${name} must be a number`);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/base.js
class base_BaseView extends AbstractMatrix() {
constructor(matrix, rows, columns) {
super();
this.matrix = matrix;
this.rows = rows;
this.columns = columns;
}
static get [Symbol.species]() {
return matrix_Matrix;
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/transpose.js
class transpose_MatrixTransposeView extends base_BaseView {
constructor(matrix) {
super(matrix, matrix.columns, matrix.rows);
}
set(rowIndex, columnIndex, value) {
this.matrix.set(columnIndex, rowIndex, value);
return this;
}
get(rowIndex, columnIndex) {
return this.matrix.get(columnIndex, rowIndex);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/row.js
class row_MatrixRowView extends base_BaseView {
constructor(matrix, row) {
super(matrix, 1, matrix.columns);
this.row = row;
}
set(rowIndex, columnIndex, value) {
this.matrix.set(this.row, columnIndex, value);
return this;
}
get(rowIndex, columnIndex) {
return this.matrix.get(this.row, columnIndex);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/sub.js
class sub_MatrixSubView extends base_BaseView {
constructor(matrix, startRow, endRow, startColumn, endColumn) {
checkRange(matrix, startRow, endRow, startColumn, endColumn);
super(matrix, endRow - startRow + 1, endColumn - startColumn + 1);
this.startRow = startRow;
this.startColumn = startColumn;
}
set(rowIndex, columnIndex, value) {
this.matrix.set(
this.startRow + rowIndex,
this.startColumn + columnIndex,
value
);
return this;
}
get(rowIndex, columnIndex) {
return this.matrix.get(
this.startRow + rowIndex,
this.startColumn + columnIndex
);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/selection.js
class selection_MatrixSelectionView extends base_BaseView {
constructor(matrix, rowIndices, columnIndices) {
var indices = checkIndices(matrix, rowIndices, columnIndices);
super(matrix, indices.row.length, indices.column.length);
this.rowIndices = indices.row;
this.columnIndices = indices.column;
}
set(rowIndex, columnIndex, value) {
this.matrix.set(
this.rowIndices[rowIndex],
this.columnIndices[columnIndex],
value
);
return this;
}
get(rowIndex, columnIndex) {
return this.matrix.get(
this.rowIndices[rowIndex],
this.columnIndices[columnIndex]
);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/rowSelection.js
class rowSelection_MatrixRowSelectionView extends base_BaseView {
constructor(matrix, rowIndices) {
rowIndices = checkRowIndices(matrix, rowIndices);
super(matrix, rowIndices.length, matrix.columns);
this.rowIndices = rowIndices;
}
set(rowIndex, columnIndex, value) {
this.matrix.set(this.rowIndices[rowIndex], columnIndex, value);
return this;
}
get(rowIndex, columnIndex) {
return this.matrix.get(this.rowIndices[rowIndex], columnIndex);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/columnSelection.js
class columnSelection_MatrixColumnSelectionView extends base_BaseView {
constructor(matrix, columnIndices) {
columnIndices = checkColumnIndices(matrix, columnIndices);
super(matrix, matrix.rows, columnIndices.length);
this.columnIndices = columnIndices;
}
set(rowIndex, columnIndex, value) {
this.matrix.set(rowIndex, this.columnIndices[columnIndex], value);
return this;
}
get(rowIndex, columnIndex) {
return this.matrix.get(rowIndex, this.columnIndices[columnIndex]);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/column.js
class column_MatrixColumnView extends base_BaseView {
constructor(matrix, column) {
super(matrix, matrix.rows, 1);
this.column = column;
}
set(rowIndex, columnIndex, value) {
this.matrix.set(rowIndex, this.column, value);
return this;
}
get(rowIndex) {
return this.matrix.get(rowIndex, this.column);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/flipRow.js
class flipRow_MatrixFlipRowView extends base_BaseView {
constructor(matrix) {
super(matrix, matrix.rows, matrix.columns);
}
set(rowIndex, columnIndex, value) {
this.matrix.set(this.rows - rowIndex - 1, columnIndex, value);
return this;
}
get(rowIndex, columnIndex) {
return this.matrix.get(this.rows - rowIndex - 1, columnIndex);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/flipColumn.js
class flipColumn_MatrixFlipColumnView extends base_BaseView {
constructor(matrix) {
super(matrix, matrix.rows, matrix.columns);
}
set(rowIndex, columnIndex, value) {
this.matrix.set(rowIndex, this.columns - columnIndex - 1, value);
return this;
}
get(rowIndex, columnIndex) {
return this.matrix.get(rowIndex, this.columns - columnIndex - 1);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/abstractMatrix.js
function AbstractMatrix(superCtor) {
if (superCtor === undefined) superCtor = Object;
/**
* Real matrix
* @class Matrix
* @param {number|Array|Matrix} nRows - Number of rows of the new matrix,
* 2D array containing the data or Matrix instance to clone
* @param {number} [nColumns] - Number of columns of the new matrix
*/
class Matrix extends superCtor {
static get [Symbol.species]() {
return this;
}
/**
* Constructs a Matrix with the chosen dimensions from a 1D array
* @param {number} newRows - Number of rows
* @param {number} newColumns - Number of columns
* @param {Array} newData - A 1D array containing data for the matrix
* @return {Matrix} - The new matrix
*/
static from1DArray(newRows, newColumns, newData) {
var length = newRows * newColumns;
if (length !== newData.length) {
throw new RangeError('Data length does not match given dimensions');
}
var newMatrix = new this(newRows, newColumns);
for (var row = 0; row < newRows; row++) {
for (var column = 0; column < newColumns; column++) {
newMatrix.set(row, column, newData[row * newColumns + column]);
}
}
return newMatrix;
}
/**
* Creates a row vector, a matrix with only one row.
* @param {Array} newData - A 1D array containing data for the vector
* @return {Matrix} - The new matrix
*/
static rowVector(newData) {
var vector = new this(1, newData.length);
for (var i = 0; i < newData.length; i++) {
vector.set(0, i, newData[i]);
}
return vector;
}
/**
* Creates a column vector, a matrix with only one column.
* @param {Array} newData - A 1D array containing data for the vector
* @return {Matrix} - The new matrix
*/
static columnVector(newData) {
var vector = new this(newData.length, 1);
for (var i = 0; i < newData.length; i++) {
vector.set(i, 0, newData[i]);
}
return vector;
}
/**
* Creates an empty matrix with the given dimensions. Values will be undefined. Same as using new Matrix(rows, columns).
* @param {number} rows - Number of rows
* @param {number} columns - Number of columns
* @return {Matrix} - The new matrix
*/
static empty(rows, columns) {
return new this(rows, columns);
}
/**
* Creates a matrix with the given dimensions. Values will be set to zero.
* @param {number} rows - Number of rows
* @param {number} columns - Number of columns
* @return {Matrix} - The new matrix
*/
static zeros(rows, columns) {
return this.empty(rows, columns).fill(0);
}
/**
* Creates a matrix with the given dimensions. Values will be set to one.
* @param {number} rows - Number of rows
* @param {number} columns - Number of columns
* @return {Matrix} - The new matrix
*/
static ones(rows, columns) {
return this.empty(rows, columns).fill(1);
}
/**
* Creates a matrix with the given dimensions. Values will be randomly set.
* @param {number} rows - Number of rows
* @param {number} columns - Number of columns
* @param {function} [rng=Math.random] - Random number generator
* @return {Matrix} The new matrix
*/
static rand(rows, columns, rng) {
if (rng === undefined) rng = Math.random;
var matrix = this.empty(rows, columns);
for (var i = 0; i < rows; i++) {
for (var j = 0; j < columns; j++) {
matrix.set(i, j, rng());
}
}
return matrix;
}
/**
* Creates a matrix with the given dimensions. Values will be random integers.
* @param {number} rows - Number of rows
* @param {number} columns - Number of columns
* @param {number} [maxValue=1000] - Maximum value
* @param {function} [rng=Math.random] - Random number generator
* @return {Matrix} The new matrix
*/
static randInt(rows, columns, maxValue, rng) {
if (maxValue === undefined) maxValue = 1000;
if (rng === undefined) rng = Math.random;
var matrix = this.empty(rows, columns);
for (var i = 0; i < rows; i++) {
for (var j = 0; j < columns; j++) {
var value = Math.floor(rng() * maxValue);
matrix.set(i, j, value);
}
}
return matrix;
}
/**
* Creates an identity matrix with the given dimension. Values of the diagonal will be 1 and others will be 0.
* @param {number} rows - Number of rows
* @param {number} [columns=rows] - Number of columns
* @param {number} [value=1] - Value to fill the diagonal with
* @return {Matrix} - The new identity matrix
*/
static eye(rows, columns, value) {
if (columns === undefined) columns = rows;
if (value === undefined) value = 1;
var min = Math.min(rows, columns);
var matrix = this.zeros(rows, columns);
for (var i = 0; i < min; i++) {
matrix.set(i, i, value);
}
return matrix;
}
/**
* Creates a diagonal matrix based on the given array.
* @param {Array} data - Array containing the data for the diagonal
* @param {number} [rows] - Number of rows (Default: data.length)
* @param {number} [columns] - Number of columns (Default: rows)
* @return {Matrix} - The new diagonal matrix
*/
static diag(data, rows, columns) {
var l = data.length;
if (rows === undefined) rows = l;
if (columns === undefined) columns = rows;
var min = Math.min(l, rows, columns);
var matrix = this.zeros(rows, columns);
for (var i = 0; i < min; i++) {
matrix.set(i, i, data[i]);
}
return matrix;
}
/**
* Returns a matrix whose elements are the minimum between matrix1 and matrix2
* @param {Matrix} matrix1
* @param {Matrix} matrix2
* @return {Matrix}
*/
static min(matrix1, matrix2) {
matrix1 = this.checkMatrix(matrix1);
matrix2 = this.checkMatrix(matrix2);
var rows = matrix1.rows;
var columns = matrix1.columns;
var result = new this(rows, columns);
for (var i = 0; i < rows; i++) {
for (var j = 0; j < columns; j++) {
result.set(i, j, Math.min(matrix1.get(i, j), matrix2.get(i, j)));
}
}
return result;
}
/**
* Returns a matrix whose elements are the maximum between matrix1 and matrix2
* @param {Matrix} matrix1
* @param {Matrix} matrix2
* @return {Matrix}
*/
static max(matrix1, matrix2) {
matrix1 = this.checkMatrix(matrix1);
matrix2 = this.checkMatrix(matrix2);
var rows = matrix1.rows;
var columns = matrix1.columns;
var result = new this(rows, columns);
for (var i = 0; i < rows; i++) {
for (var j = 0; j < columns; j++) {
result.set(i, j, Math.max(matrix1.get(i, j), matrix2.get(i, j)));
}
}
return result;
}
/**
* Check that the provided value is a Matrix and tries to instantiate one if not
* @param {*} value - The value to check
* @return {Matrix}
*/
static checkMatrix(value) {
return Matrix.isMatrix(value) ? value : new this(value);
}
/**
* Returns true if the argument is a Matrix, false otherwise
* @param {*} value - The value to check
* @return {boolean}
*/
static isMatrix(value) {
return (value != null) && (value.klass === 'Matrix');
}
/**
* @prop {number} size - The number of elements in the matrix.
*/
get size() {
return this.rows * this.columns;
}
/**
* Applies a callback for each element of the matrix. The function is called in the matrix (this) context.
* @param {function} callback - Function that will be called with two parameters : i (row) and j (column)
* @return {Matrix} this
*/
apply(callback) {
if (typeof callback !== 'function') {
throw new TypeError('callback must be a function');
}
var ii = this.rows;
var jj = this.columns;
for (var i = 0; i < ii; i++) {
for (var j = 0; j < jj; j++) {
callback.call(this, i, j);
}
}
return this;
}
/**
* Returns a new 1D array filled row by row with the matrix values
* @return {Array}
*/
to1DArray() {
var array = new Array(this.size);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
array[i * this.columns + j] = this.get(i, j);
}
}
return array;
}
/**
* Returns a 2D array containing a copy of the data
* @return {Array}
*/
to2DArray() {
var copy = new Array(this.rows);
for (var i = 0; i < this.rows; i++) {
copy[i] = new Array(this.columns);
for (var j = 0; j < this.columns; j++) {
copy[i][j] = this.get(i, j);
}
}
return copy;
}
/**
* @return {boolean} true if the matrix has one row
*/
isRowVector() {
return this.rows === 1;
}
/**
* @return {boolean} true if the matrix has one column
*/
isColumnVector() {
return this.columns === 1;
}
/**
* @return {boolean} true if the matrix has one row or one column
*/
isVector() {
return (this.rows === 1) || (this.columns === 1);
}
/**
* @return {boolean} true if the matrix has the same number of rows and columns
*/
isSquare() {
return this.rows === this.columns;
}
/**
* @return {boolean} true if the matrix is square and has the same values on both sides of the diagonal
*/
isSymmetric() {
if (this.isSquare()) {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j <= i; j++) {
if (this.get(i, j) !== this.get(j, i)) {
return false;
}
}
}
return true;
}
return false;
}
/**
* Sets a given element of the matrix. mat.set(3,4,1) is equivalent to mat[3][4]=1
* @abstract
* @param {number} rowIndex - Index of the row
* @param {number} columnIndex - Index of the column
* @param {number} value - The new value for the element
* @return {Matrix} this
*/
set(rowIndex, columnIndex, value) { // eslint-disable-line no-unused-vars
throw new Error('set method is unimplemented');
}
/**
* Returns the given element of the matrix. mat.get(3,4) is equivalent to matrix[3][4]
* @abstract
* @param {number} rowIndex - Index of the row
* @param {number} columnIndex - Index of the column
* @return {number}
*/
get(rowIndex, columnIndex) { // eslint-disable-line no-unused-vars
throw new Error('get method is unimplemented');
}
/**
* Creates a new matrix that is a repetition of the current matrix. New matrix has rowRep times the number of
* rows of the matrix, and colRep times the number of columns of the matrix
* @param {number} rowRep - Number of times the rows should be repeated
* @param {number} colRep - Number of times the columns should be re
* @return {Matrix}
* @example
* var matrix = new Matrix([[1,2]]);
* matrix.repeat(2); // [[1,2],[1,2]]
*/
repeat(rowRep, colRep) {
rowRep = rowRep || 1;
colRep = colRep || 1;
var matrix = new this.constructor[Symbol.species](this.rows * rowRep, this.columns * colRep);
for (var i = 0; i < rowRep; i++) {
for (var j = 0; j < colRep; j++) {
matrix.setSubMatrix(this, this.rows * i, this.columns * j);
}
}
return matrix;
}
/**
* Fills the matrix with a given value. All elements will be set to this value.
* @param {number} value - New value
* @return {Matrix} this
*/
fill(value) {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, value);
}
}
return this;
}
/**
* Negates the matrix. All elements will be multiplied by (-1)
* @return {Matrix} this
*/
neg() {
return this.mulS(-1);
}
/**
* Returns a new array from the given row index
* @param {number} index - Row index
* @return {Array}
*/
getRow(index) {
checkRowIndex(this, index);
var row = new Array(this.columns);
for (var i = 0; i < this.columns; i++) {
row[i] = this.get(index, i);
}
return row;
}
/**
* Returns a new row vector from the given row index
* @param {number} index - Row index
* @return {Matrix}
*/
getRowVector(index) {
return this.constructor.rowVector(this.getRow(index));
}
/**
* Sets a row at the given index
* @param {number} index - Row index
* @param {Array|Matrix} array - Array or vector
* @return {Matrix} this
*/
setRow(index, array) {
checkRowIndex(this, index);
array = checkRowVector(this, array);
for (var i = 0; i < this.columns; i++) {
this.set(index, i, array[i]);
}
return this;
}
/**
* Swaps two rows
* @param {number} row1 - First row index
* @param {number} row2 - Second row index
* @return {Matrix} this
*/
swapRows(row1, row2) {
checkRowIndex(this, row1);
checkRowIndex(this, row2);
for (var i = 0; i < this.columns; i++) {
var temp = this.get(row1, i);
this.set(row1, i, this.get(row2, i));
this.set(row2, i, temp);
}
return this;
}
/**
* Returns a new array from the given column index
* @param {number} index - Column index
* @return {Array}
*/
getColumn(index) {
checkColumnIndex(this, index);
var column = new Array(this.rows);
for (var i = 0; i < this.rows; i++) {
column[i] = this.get(i, index);
}
return column;
}
/**
* Returns a new column vector from the given column index
* @param {number} index - Column index
* @return {Matrix}
*/
getColumnVector(index) {
return this.constructor.columnVector(this.getColumn(index));
}
/**
* Sets a column at the given index
* @param {number} index - Column index
* @param {Array|Matrix} array - Array or vector
* @return {Matrix} this
*/
setColumn(index, array) {
checkColumnIndex(this, index);
array = checkColumnVector(this, array);
for (var i = 0; i < this.rows; i++) {
this.set(i, index, array[i]);
}
return this;
}
/**
* Swaps two columns
* @param {number} column1 - First column index
* @param {number} column2 - Second column index
* @return {Matrix} this
*/
swapColumns(column1, column2) {
checkColumnIndex(this, column1);
checkColumnIndex(this, column2);
for (var i = 0; i < this.rows; i++) {
var temp = this.get(i, column1);
this.set(i, column1, this.get(i, column2));
this.set(i, column2, temp);
}
return this;
}
/**
* Adds the values of a vector to each row
* @param {Array|Matrix} vector - Array or vector
* @return {Matrix} this
*/
addRowVector(vector) {
vector = checkRowVector(this, vector);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) + vector[j]);
}
}
return this;
}
/**
* Subtracts the values of a vector from each row
* @param {Array|Matrix} vector - Array or vector
* @return {Matrix} this
*/
subRowVector(vector) {
vector = checkRowVector(this, vector);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) - vector[j]);
}
}
return this;
}
/**
* Multiplies the values of a vector with each row
* @param {Array|Matrix} vector - Array or vector
* @return {Matrix} this
*/
mulRowVector(vector) {
vector = checkRowVector(this, vector);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) * vector[j]);
}
}
return this;
}
/**
* Divides the values of each row by those of a vector
* @param {Array|Matrix} vector - Array or vector
* @return {Matrix} this
*/
divRowVector(vector) {
vector = checkRowVector(this, vector);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) / vector[j]);
}
}
return this;
}
/**
* Adds the values of a vector to each column
* @param {Array|Matrix} vector - Array or vector
* @return {Matrix} this
*/
addColumnVector(vector) {
vector = checkColumnVector(this, vector);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) + vector[i]);
}
}
return this;
}
/**
* Subtracts the values of a vector from each column
* @param {Array|Matrix} vector - Array or vector
* @return {Matrix} this
*/
subColumnVector(vector) {
vector = checkColumnVector(this, vector);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) - vector[i]);
}
}
return this;
}
/**
* Multiplies the values of a vector with each column
* @param {Array|Matrix} vector - Array or vector
* @return {Matrix} this
*/
mulColumnVector(vector) {
vector = checkColumnVector(this, vector);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) * vector[i]);
}
}
return this;
}
/**
* Divides the values of each column by those of a vector
* @param {Array|Matrix} vector - Array or vector
* @return {Matrix} this
*/
divColumnVector(vector) {
vector = checkColumnVector(this, vector);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) / vector[i]);
}
}
return this;
}
/**
* Multiplies the values of a row with a scalar
* @param {number} index - Row index
* @param {number} value
* @return {Matrix} this
*/
mulRow(index, value) {
checkRowIndex(this, index);
for (var i = 0; i < this.columns; i++) {
this.set(index, i, this.get(index, i) * value);
}
return this;
}
/**
* Multiplies the values of a column with a scalar
* @param {number} index - Column index
* @param {number} value
* @return {Matrix} this
*/
mulColumn(index, value) {
checkColumnIndex(this, index);
for (var i = 0; i < this.rows; i++) {
this.set(i, index, this.get(i, index) * value);
}
return this;
}
/**
* Returns the maximum value of the matrix
* @return {number}
*/
max() {
var v = this.get(0, 0);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
if (this.get(i, j) > v) {
v = this.get(i, j);
}
}
}
return v;
}
/**
* Returns the index of the maximum value
* @return {Array}
*/
maxIndex() {
var v = this.get(0, 0);
var idx = [0, 0];
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
if (this.get(i, j) > v) {
v = this.get(i, j);
idx[0] = i;
idx[1] = j;
}
}
}
return idx;
}
/**
* Returns the minimum value of the matrix
* @return {number}
*/
min() {
var v = this.get(0, 0);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
if (this.get(i, j) < v) {
v = this.get(i, j);
}
}
}
return v;
}
/**
* Returns the index of the minimum value
* @return {Array}
*/
minIndex() {
var v = this.get(0, 0);
var idx = [0, 0];
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
if (this.get(i, j) < v) {
v = this.get(i, j);
idx[0] = i;
idx[1] = j;
}
}
}
return idx;
}
/**
* Returns the maximum value of one row
* @param {number} row - Row index
* @return {number}
*/
maxRow(row) {
checkRowIndex(this, row);
var v = this.get(row, 0);
for (var i = 1; i < this.columns; i++) {
if (this.get(row, i) > v) {
v = this.get(row, i);
}
}
return v;
}
/**
* Returns the index of the maximum value of one row
* @param {number} row - Row index
* @return {Array}
*/
maxRowIndex(row) {
checkRowIndex(this, row);
var v = this.get(row, 0);
var idx = [row, 0];
for (var i = 1; i < this.columns; i++) {
if (this.get(row, i) > v) {
v = this.get(row, i);
idx[1] = i;
}
}
return idx;
}
/**
* Returns the minimum value of one row
* @param {number} row - Row index
* @return {number}
*/
minRow(row) {
checkRowIndex(this, row);
var v = this.get(row, 0);
for (var i = 1; i < this.columns; i++) {
if (this.get(row, i) < v) {
v = this.get(row, i);
}
}
return v;
}
/**
* Returns the index of the maximum value of one row
* @param {number} row - Row index
* @return {Array}
*/
minRowIndex(row) {
checkRowIndex(this, row);
var v = this.get(row, 0);
var idx = [row, 0];
for (var i = 1; i < this.columns; i++) {
if (this.get(row, i) < v) {
v = this.get(row, i);
idx[1] = i;
}
}
return idx;
}
/**
* Returns the maximum value of one column
* @param {number} column - Column index
* @return {number}
*/
maxColumn(column) {
checkColumnIndex(this, column);
var v = this.get(0, column);
for (var i = 1; i < this.rows; i++) {
if (this.get(i, column) > v) {
v = this.get(i, column);
}
}
return v;
}
/**
* Returns the index of the maximum value of one column
* @param {number} column - Column index
* @return {Array}
*/
maxColumnIndex(column) {
checkColumnIndex(this, column);
var v = this.get(0, column);
var idx = [0, column];
for (var i = 1; i < this.rows; i++) {
if (this.get(i, column) > v) {
v = this.get(i, column);
idx[0] = i;
}
}
return idx;
}
/**
* Returns the minimum value of one column
* @param {number} column - Column index
* @return {number}
*/
minColumn(column) {
checkColumnIndex(this, column);
var v = this.get(0, column);
for (var i = 1; i < this.rows; i++) {
if (this.get(i, column) < v) {
v = this.get(i, column);
}
}
return v;
}
/**
* Returns the index of the minimum value of one column
* @param {number} column - Column index
* @return {Array}
*/
minColumnIndex(column) {
checkColumnIndex(this, column);
var v = this.get(0, column);
var idx = [0, column];
for (var i = 1; i < this.rows; i++) {
if (this.get(i, column) < v) {
v = this.get(i, column);
idx[0] = i;
}
}
return idx;
}
/**
* Returns an array containing the diagonal values of the matrix
* @return {Array}
*/
diag() {
var min = Math.min(this.rows, this.columns);
var diag = new Array(min);
for (var i = 0; i < min; i++) {
diag[i] = this.get(i, i);
}
return diag;
}
/**
* Returns the sum by the argument given, if no argument given,
* it returns the sum of all elements of the matrix.
* @param {string} by - sum by 'row' or 'column'.
* @return {Matrix|number}
*/
sum(by) {
switch (by) {
case 'row':
return sumByRow(this);
case 'column':
return sumByColumn(this);
default:
return sumAll(this);
}
}
/**
* Returns the mean of all elements of the matrix
* @return {number}
*/
mean() {
return this.sum() / this.size;
}
/**
* Returns the product of all elements of the matrix
* @return {number}
*/
prod() {
var prod = 1;
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
prod *= this.get(i, j);
}
}
return prod;
}
/**
* Returns the norm of a matrix.
* @param {string} type - "frobenius" (default) or "max" return resp. the Frobenius norm and the max norm.
* @return {number}
*/
norm(type = 'frobenius') {
var result = 0;
if (type === 'max') {
return this.max();
} else if (type === 'frobenius') {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
result = result + this.get(i, j) * this.get(i, j);
}
}
return Math.sqrt(result);
} else {
throw new RangeError(`unknown norm type: ${type}`);
}
}
/**
* Computes the cumulative sum of the matrix elements (in place, row by row)
* @return {Matrix} this
*/
cumulativeSum() {
var sum = 0;
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
sum += this.get(i, j);
this.set(i, j, sum);
}
}
return this;
}
/**
* Computes the dot (scalar) product between the matrix and another
* @param {Matrix} vector2 vector
* @return {number}
*/
dot(vector2) {
if (Matrix.isMatrix(vector2)) vector2 = vector2.to1DArray();
var vector1 = this.to1DArray();
if (vector1.length !== vector2.length) {
throw new RangeError('vectors do not have the same size');
}
var dot = 0;
for (var i = 0; i < vector1.length; i++) {
dot += vector1[i] * vector2[i];
}
return dot;
}
/**
* Returns the matrix product between this and other
* @param {Matrix} other
* @return {Matrix}
*/
mmul(other) {
other = this.constructor.checkMatrix(other);
if (this.columns !== other.rows) {
// eslint-disable-next-line no-console
console.warn('Number of columns of left matrix are not equal to number of rows of right matrix.');
}
var m = this.rows;
var n = this.columns;
var p = other.columns;
var result = new this.constructor[Symbol.species](m, p);
var Bcolj = new Array(n);
for (var j = 0; j < p; j++) {
for (var k = 0; k < n; k++) {
Bcolj[k] = other.get(k, j);
}
for (var i = 0; i < m; i++) {
var s = 0;
for (k = 0; k < n; k++) {
s += this.get(i, k) * Bcolj[k];
}
result.set(i, j, s);
}
}
return result;
}
strassen2x2(other) {
var result = new this.constructor[Symbol.species](2, 2);
const a11 = this.get(0, 0);
const b11 = other.get(0, 0);
const a12 = this.get(0, 1);
const b12 = other.get(0, 1);
const a21 = this.get(1, 0);
const b21 = other.get(1, 0);
const a22 = this.get(1, 1);
const b22 = other.get(1, 1);
// Compute intermediate values.
const m1 = (a11 + a22) * (b11 + b22);
const m2 = (a21 + a22) * b11;
const m3 = a11 * (b12 - b22);
const m4 = a22 * (b21 - b11);
const m5 = (a11 + a12) * b22;
const m6 = (a21 - a11) * (b11 + b12);
const m7 = (a12 - a22) * (b21 + b22);
// Combine intermediate values into the output.
const c00 = m1 + m4 - m5 + m7;
const c01 = m3 + m5;
const c10 = m2 + m4;
const c11 = m1 - m2 + m3 + m6;
result.set(0, 0, c00);
result.set(0, 1, c01);
result.set(1, 0, c10);
result.set(1, 1, c11);
return result;
}
strassen3x3(other) {
var result = new this.constructor[Symbol.species](3, 3);
const a00 = this.get(0, 0);
const a01 = this.get(0, 1);
const a02 = this.get(0, 2);
const a10 = this.get(1, 0);
const a11 = this.get(1, 1);
const a12 = this.get(1, 2);
const a20 = this.get(2, 0);
const a21 = this.get(2, 1);
const a22 = this.get(2, 2);
const b00 = other.get(0, 0);
const b01 = other.get(0, 1);
const b02 = other.get(0, 2);
const b10 = other.get(1, 0);
const b11 = other.get(1, 1);
const b12 = other.get(1, 2);
const b20 = other.get(2, 0);
const b21 = other.get(2, 1);
const b22 = other.get(2, 2);
const m1 = (a00 + a01 + a02 - a10 - a11 - a21 - a22) * b11;
const m2 = (a00 - a10) * (-b01 + b11);
const m3 = a11 * (-b00 + b01 + b10 - b11 - b12 - b20 + b22);
const m4 = (-a00 + a10 + a11) * (b00 - b01 + b11);
const m5 = (a10 + a11) * (-b00 + b01);
const m6 = a00 * b00;
const m7 = (-a00 + a20 + a21) * (b00 - b02 + b12);
const m8 = (-a00 + a20) * (b02 - b12);
const m9 = (a20 + a21) * (-b00 + b02);
const m10 = (a00 + a01 + a02 - a11 - a12 - a20 - a21) * b12;
const m11 = a21 * (-b00 + b02 + b10 - b11 - b12 - b20 + b21);
const m12 = (-a02 + a21 + a22) * (b11 + b20 - b21);
const m13 = (a02 - a22) * (b11 - b21);
const m14 = a02 * b20;
const m15 = (a21 + a22) * (-b20 + b21);
const m16 = (-a02 + a11 + a12) * (b12 + b20 - b22);
const m17 = (a02 - a12) * (b12 - b22);
const m18 = (a11 + a12) * (-b20 + b22);
const m19 = a01 * b10;
const m20 = a12 * b21;
const m21 = a10 * b02;
const m22 = a20 * b01;
const m23 = a22 * b22;
const c00 = m6 + m14 + m19;
const c01 = m1 + m4 + m5 + m6 + m12 + m14 + m15;
const c02 = m6 + m7 + m9 + m10 + m14 + m16 + m18;
const c10 = m2 + m3 + m4 + m6 + m14 + m16 + m17;
const c11 = m2 + m4 + m5 + m6 + m20;
const c12 = m14 + m16 + m17 + m18 + m21;
const c20 = m6 + m7 + m8 + m11 + m12 + m13 + m14;
const c21 = m12 + m13 + m14 + m15 + m22;
const c22 = m6 + m7 + m8 + m9 + m23;
result.set(0, 0, c00);
result.set(0, 1, c01);
result.set(0, 2, c02);
result.set(1, 0, c10);
result.set(1, 1, c11);
result.set(1, 2, c12);
result.set(2, 0, c20);
result.set(2, 1, c21);
result.set(2, 2, c22);
return result;
}
/**
* Returns the matrix product between x and y. More efficient than mmul(other) only when we multiply squared matrix and when the size of the matrix is > 1000.
* @param {Matrix} y
* @return {Matrix}
*/
mmulStrassen(y) {
var x = this.clone();
var r1 = x.rows;
var c1 = x.columns;
var r2 = y.rows;
var c2 = y.columns;
if (c1 !== r2) {
// eslint-disable-next-line no-console
console.warn(`Multiplying ${r1} x ${c1} and ${r2} x ${c2} matrix: dimensions do not match.`);
}
// Put a matrix into the top left of a matrix of zeros.
// `rows` and `cols` are the dimensions of the output matrix.
function embed(mat, rows, cols) {
var r = mat.rows;
var c = mat.columns;
if ((r === rows) && (c === cols)) {
return mat;
} else {
var resultat = Matrix.zeros(rows, cols);
resultat = resultat.setSubMatrix(mat, 0, 0);
return resultat;
}
}
// Make sure both matrices are the same size.
// This is exclusively for simplicity:
// this algorithm can be implemented with matrices of different sizes.
var r = Math.max(r1, r2);
var c = Math.max(c1, c2);
x = embed(x, r, c);
y = embed(y, r, c);
// Our recursive multiplication function.
function blockMult(a, b, rows, cols) {
// For small matrices, resort to naive multiplication.
if (rows <= 512 || cols <= 512) {
return a.mmul(b); // a is equivalent to this
}
// Apply dynamic padding.
if ((rows % 2 === 1) && (cols % 2 === 1)) {
a = embed(a, rows + 1, cols + 1);
b = embed(b, rows + 1, cols + 1);
} else if (rows % 2 === 1) {
a = embed(a, rows + 1, cols);
b = embed(b, rows + 1, cols);
} else if (cols % 2 === 1) {
a = embed(a, rows, cols + 1);
b = embed(b, rows, cols + 1);
}
var halfRows = parseInt(a.rows / 2, 10);
var halfCols = parseInt(a.columns / 2, 10);
// Subdivide input matrices.
var a11 = a.subMatrix(0, halfRows - 1, 0, halfCols - 1);
var b11 = b.subMatrix(0, halfRows - 1, 0, halfCols - 1);
var a12 = a.subMatrix(0, halfRows - 1, halfCols, a.columns - 1);
var b12 = b.subMatrix(0, halfRows - 1, halfCols, b.columns - 1);
var a21 = a.subMatrix(halfRows, a.rows - 1, 0, halfCols - 1);
var b21 = b.subMatrix(halfRows, b.rows - 1, 0, halfCols - 1);
var a22 = a.subMatrix(halfRows, a.rows - 1, halfCols, a.columns - 1);
var b22 = b.subMatrix(halfRows, b.rows - 1, halfCols, b.columns - 1);
// Compute intermediate values.
var m1 = blockMult(Matrix.add(a11, a22), Matrix.add(b11, b22), halfRows, halfCols);
var m2 = blockMult(Matrix.add(a21, a22), b11, halfRows, halfCols);
var m3 = blockMult(a11, Matrix.sub(b12, b22), halfRows, halfCols);
var m4 = blockMult(a22, Matrix.sub(b21, b11), halfRows, halfCols);
var m5 = blockMult(Matrix.add(a11, a12), b22, halfRows, halfCols);
var m6 = blockMult(Matrix.sub(a21, a11), Matrix.add(b11, b12), halfRows, halfCols);
var m7 = blockMult(Matrix.sub(a12, a22), Matrix.add(b21, b22), halfRows, halfCols);
// Combine intermediate values into the output.
var c11 = Matrix.add(m1, m4);
c11.sub(m5);
c11.add(m7);
var c12 = Matrix.add(m3, m5);
var c21 = Matrix.add(m2, m4);
var c22 = Matrix.sub(m1, m2);
c22.add(m3);
c22.add(m6);
// Crop output to the desired size (undo dynamic padding).
var resultat = Matrix.zeros(2 * c11.rows, 2 * c11.columns);
resultat = resultat.setSubMatrix(c11, 0, 0);
resultat = resultat.setSubMatrix(c12, c11.rows, 0);
resultat = resultat.setSubMatrix(c21, 0, c11.columns);
resultat = resultat.setSubMatrix(c22, c11.rows, c11.columns);
return resultat.subMatrix(0, rows - 1, 0, cols - 1);
}
return blockMult(x, y, r, c);
}
/**
* Returns a row-by-row scaled matrix
* @param {number} [min=0] - Minimum scaled value
* @param {number} [max=1] - Maximum scaled value
* @return {Matrix} - The scaled matrix
*/
scaleRows(min, max) {
min = min === undefined ? 0 : min;
max = max === undefined ? 1 : max;
if (min >= max) {
throw new RangeError('min should be strictly smaller than max');
}
var newMatrix = this.constructor.empty(this.rows, this.columns);
for (var i = 0; i < this.rows; i++) {
var scaled = ml_array_rescale_lib_es6(this.getRow(i), { min, max });
newMatrix.setRow(i, scaled);
}
return newMatrix;
}
/**
* Returns a new column-by-column scaled matrix
* @param {number} [min=0] - Minimum scaled value
* @param {number} [max=1] - Maximum scaled value
* @return {Matrix} - The new scaled matrix
* @example
* var matrix = new Matrix([[1,2],[-1,0]]);
* var scaledMatrix = matrix.scaleColumns(); // [[1,1],[0,0]]
*/
scaleColumns(min, max) {
min = min === undefined ? 0 : min;
max = max === undefined ? 1 : max;
if (min >= max) {
throw new RangeError('min should be strictly smaller than max');
}
var newMatrix = this.constructor.empty(this.rows, this.columns);
for (var i = 0; i < this.columns; i++) {
var scaled = ml_array_rescale_lib_es6(this.getColumn(i), {
min: min,
max: max
});
newMatrix.setColumn(i, scaled);
}
return newMatrix;
}
/**
* Returns the Kronecker product (also known as tensor product) between this and other
* See https://en.wikipedia.org/wiki/Kronecker_product
* @param {Matrix} other
* @return {Matrix}
*/
kroneckerProduct(other) {
other = this.constructor.checkMatrix(other);
var m = this.rows;
var n = this.columns;
var p = other.rows;
var q = other.columns;
var result = new this.constructor[Symbol.species](m * p, n * q);
for (var i = 0; i < m; i++) {
for (var j = 0; j < n; j++) {
for (var k = 0; k < p; k++) {
for (var l = 0; l < q; l++) {
result[p * i + k][q * j + l] = this.get(i, j) * other.get(k, l);
}
}
}
}
return result;
}
/**
* Transposes the matrix and returns a new one containing the result
* @return {Matrix}
*/
transpose() {
var result = new this.constructor[Symbol.species](this.columns, this.rows);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
result.set(j, i, this.get(i, j));
}
}
return result;
}
/**
* Sorts the rows (in place)
* @param {function} compareFunction - usual Array.prototype.sort comparison function
* @return {Matrix} this
*/
sortRows(compareFunction) {
if (compareFunction === undefined) compareFunction = compareNumbers;
for (var i = 0; i < this.rows; i++) {
this.setRow(i, this.getRow(i).sort(compareFunction));
}
return this;
}
/**
* Sorts the columns (in place)
* @param {function} compareFunction - usual Array.prototype.sort comparison function
* @return {Matrix} this
*/
sortColumns(compareFunction) {
if (compareFunction === undefined) compareFunction = compareNumbers;
for (var i = 0; i < this.columns; i++) {
this.setColumn(i, this.getColumn(i).sort(compareFunction));
}
return this;
}
/**
* Returns a subset of the matrix
* @param {number} startRow - First row index
* @param {number} endRow - Last row index
* @param {number} startColumn - First column index
* @param {number} endColumn - Last column index
* @return {Matrix}
*/
subMatrix(startRow, endRow, startColumn, endColumn) {
checkRange(this, startRow, endRow, startColumn, endColumn);
var newMatrix = new this.constructor[Symbol.species](endRow - startRow + 1, endColumn - startColumn + 1);
for (var i = startRow; i <= endRow; i++) {
for (var j = startColumn; j <= endColumn; j++) {
newMatrix[i - startRow][j - startColumn] = this.get(i, j);
}
}
return newMatrix;
}
/**
* Returns a subset of the matrix based on an array of row indices
* @param {Array} indices - Array containing the row indices
* @param {number} [startColumn = 0] - First column index
* @param {number} [endColumn = this.columns-1] - Last column index
* @return {Matrix}
*/
subMatrixRow(indices, startColumn, endColumn) {
if (startColumn === undefined) startColumn = 0;
if (endColumn === undefined) endColumn = this.columns - 1;
if ((startColumn > endColumn) || (startColumn < 0) || (startColumn >= this.columns) || (endColumn < 0) || (endColumn >= this.columns)) {
throw new RangeError('Argument out of range');
}
var newMatrix = new this.constructor[Symbol.species](indices.length, endColumn - startColumn + 1);
for (var i = 0; i < indices.length; i++) {
for (var j = startColumn; j <= endColumn; j++) {
if (indices[i] < 0 || indices[i] >= this.rows) {
throw new RangeError(`Row index out of range: ${indices[i]}`);
}
newMatrix.set(i, j - startColumn, this.get(indices[i], j));
}
}
return newMatrix;
}
/**
* Returns a subset of the matrix based on an array of column indices
* @param {Array} indices - Array containing the column indices
* @param {number} [startRow = 0] - First row index
* @param {number} [endRow = this.rows-1] - Last row index
* @return {Matrix}
*/
subMatrixColumn(indices, startRow, endRow) {
if (startRow === undefined) startRow = 0;
if (endRow === undefined) endRow = this.rows - 1;
if ((startRow > endRow) || (startRow < 0) || (startRow >= this.rows) || (endRow < 0) || (endRow >= this.rows)) {
throw new RangeError('Argument out of range');
}
var newMatrix = new this.constructor[Symbol.species](endRow - startRow + 1, indices.length);
for (var i = 0; i < indices.length; i++) {
for (var j = startRow; j <= endRow; j++) {
if (indices[i] < 0 || indices[i] >= this.columns) {
throw new RangeError(`Column index out of range: ${indices[i]}`);
}
newMatrix.set(j - startRow, i, this.get(j, indices[i]));
}
}
return newMatrix;
}
/**
* Set a part of the matrix to the given sub-matrix
* @param {Matrix|Array< Array >} matrix - The source matrix from which to extract values.
* @param {number} startRow - The index of the first row to set
* @param {number} startColumn - The index of the first column to set
* @return {Matrix}
*/
setSubMatrix(matrix, startRow, startColumn) {
matrix = this.constructor.checkMatrix(matrix);
var endRow = startRow + matrix.rows - 1;
var endColumn = startColumn + matrix.columns - 1;
checkRange(this, startRow, endRow, startColumn, endColumn);
for (var i = 0; i < matrix.rows; i++) {
for (var j = 0; j < matrix.columns; j++) {
this[startRow + i][startColumn + j] = matrix.get(i, j);
}
}
return this;
}
/**
* Return a new matrix based on a selection of rows and columns
* @param {Array<number>} rowIndices - The row indices to select. Order matters and an index can be more than once.
* @param {Array<number>} columnIndices - The column indices to select. Order matters and an index can be use more than once.
* @return {Matrix} The new matrix
*/
selection(rowIndices, columnIndices) {
var indices = checkIndices(this, rowIndices, columnIndices);
var newMatrix = new this.constructor[Symbol.species](rowIndices.length, columnIndices.length);
for (var i = 0; i < indices.row.length; i++) {
var rowIndex = indices.row[i];
for (var j = 0; j < indices.column.length; j++) {
var columnIndex = indices.column[j];
newMatrix[i][j] = this.get(rowIndex, columnIndex);
}
}
return newMatrix;
}
/**
* Returns the trace of the matrix (sum of the diagonal elements)
* @return {number}
*/
trace() {
var min = Math.min(this.rows, this.columns);
var trace = 0;
for (var i = 0; i < min; i++) {
trace += this.get(i, i);
}
return trace;
}
/*
Matrix views
*/
/**
* Returns a view of the transposition of the matrix
* @return {MatrixTransposeView}
*/
transposeView() {
return new transpose_MatrixTransposeView(this);
}
/**
* Returns a view of the row vector with the given index
* @param {number} row - row index of the vector
* @return {MatrixRowView}
*/
rowView(row) {
checkRowIndex(this, row);
return new row_MatrixRowView(this, row);
}
/**
* Returns a view of the column vector with the given index
* @param {number} column - column index of the vector
* @return {MatrixColumnView}
*/
columnView(column) {
checkColumnIndex(this, column);
return new column_MatrixColumnView(this, column);
}
/**
* Returns a view of the matrix flipped in the row axis
* @return {MatrixFlipRowView}
*/
flipRowView() {
return new flipRow_MatrixFlipRowView(this);
}
/**
* Returns a view of the matrix flipped in the column axis
* @return {MatrixFlipColumnView}
*/
flipColumnView() {
return new flipColumn_MatrixFlipColumnView(this);
}
/**
* Returns a view of a submatrix giving the index boundaries
* @param {number} startRow - first row index of the submatrix
* @param {number} endRow - last row index of the submatrix
* @param {number} startColumn - first column index of the submatrix
* @param {number} endColumn - last column index of the submatrix
* @return {MatrixSubView}
*/
subMatrixView(startRow, endRow, startColumn, endColumn) {
return new sub_MatrixSubView(this, startRow, endRow, startColumn, endColumn);
}
/**
* Returns a view of the cross of the row indices and the column indices
* @example
* // resulting vector is [[2], [2]]
* var matrix = new Matrix([[1,2,3], [4,5,6]]).selectionView([0, 0], [1])
* @param {Array<number>} rowIndices
* @param {Array<number>} columnIndices
* @return {MatrixSelectionView}
*/
selectionView(rowIndices, columnIndices) {
return new selection_MatrixSelectionView(this, rowIndices, columnIndices);
}
/**
* Returns a view of the row indices
* @example
* // resulting vector is [[1,2,3], [1,2,3]]
* var matrix = new Matrix([[1,2,3], [4,5,6]]).rowSelectionView([0, 0])
* @param {Array<number>} rowIndices
* @return {MatrixRowSelectionView}
*/
rowSelectionView(rowIndices) {
return new rowSelection_MatrixRowSelectionView(this, rowIndices);
}
/**
* Returns a view of the column indices
* @example
* // resulting vector is [[2, 2], [5, 5]]
* var matrix = new Matrix([[1,2,3], [4,5,6]]).columnSelectionView([1, 1])
* @param {Array<number>} columnIndices
* @return {MatrixColumnSelectionView}
*/
columnSelectionView(columnIndices) {
return new columnSelection_MatrixColumnSelectionView(this, columnIndices);
}
/**
* Calculates and returns the determinant of a matrix as a Number
* @example
* new Matrix([[1,2,3], [4,5,6]]).det()
* @return {number}
*/
det() {
if (this.isSquare()) {
var a, b, c, d;
if (this.columns === 2) {
// 2 x 2 matrix
a = this.get(0, 0);
b = this.get(0, 1);
c = this.get(1, 0);
d = this.get(1, 1);
return a * d - (b * c);
} else if (this.columns === 3) {
// 3 x 3 matrix
var subMatrix0, subMatrix1, subMatrix2;
subMatrix0 = this.selectionView([1, 2], [1, 2]);
subMatrix1 = this.selectionView([1, 2], [0, 2]);
subMatrix2 = this.selectionView([1, 2], [0, 1]);
a = this.get(0, 0);
b = this.get(0, 1);
c = this.get(0, 2);
return a * subMatrix0.det() - b * subMatrix1.det() + c * subMatrix2.det();
} else {
// general purpose determinant using the LU decomposition
return new lu_LuDecomposition(this).determinant;
}
} else {
throw Error('Determinant can only be calculated for a square matrix.');
}
}
/**
* Returns inverse of a matrix if it exists or the pseudoinverse
* @param {number} threshold - threshold for taking inverse of singular values (default = 1e-15)
* @return {Matrix} the (pseudo)inverted matrix.
*/
pseudoInverse(threshold) {
if (threshold === undefined) threshold = Number.EPSILON;
var svdSolution = new svd_SingularValueDecomposition(this, { autoTranspose: true });
var U = svdSolution.leftSingularVectors;
var V = svdSolution.rightSingularVectors;
var s = svdSolution.diagonal;
for (var i = 0; i < s.length; i++) {
if (Math.abs(s[i]) > threshold) {
s[i] = 1.0 / s[i];
} else {
s[i] = 0.0;
}
}
// convert list to diagonal
s = this.constructor[Symbol.species].diag(s);
return V.mmul(s.mmul(U.transposeView()));
}
/**
* Creates an exact and independent copy of the matrix
* @return {Matrix}
*/
clone() {
var newMatrix = new this.constructor[Symbol.species](this.rows, this.columns);
for (var row = 0; row < this.rows; row++) {
for (var column = 0; column < this.columns; column++) {
newMatrix.set(row, column, this.get(row, column));
}
}
return newMatrix;
}
}
Matrix.prototype.klass = 'Matrix';
function compareNumbers(a, b) {
return a - b;
}
/*
Synonyms
*/
Matrix.random = Matrix.rand;
Matrix.diagonal = Matrix.diag;
Matrix.prototype.diagonal = Matrix.prototype.diag;
Matrix.identity = Matrix.eye;
Matrix.prototype.negate = Matrix.prototype.neg;
Matrix.prototype.tensorProduct = Matrix.prototype.kroneckerProduct;
Matrix.prototype.determinant = Matrix.prototype.det;
/*
Add dynamically instance and static methods for mathematical operations
*/
var inplaceOperator = `
(function %name%(value) {
if (typeof value === 'number') return this.%name%S(value);
return this.%name%M(value);
})
`;
var inplaceOperatorScalar = `
(function %name%S(value) {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) %op% value);
}
}
return this;
})
`;
var inplaceOperatorMatrix = `
(function %name%M(matrix) {
matrix = this.constructor.checkMatrix(matrix);
if (this.rows !== matrix.rows ||
this.columns !== matrix.columns) {
throw new RangeError('Matrices dimensions must be equal');
}
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, this.get(i, j) %op% matrix.get(i, j));
}
}
return this;
})
`;
var staticOperator = `
(function %name%(matrix, value) {
var newMatrix = new this[Symbol.species](matrix);
return newMatrix.%name%(value);
})
`;
var inplaceMethod = `
(function %name%() {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, %method%(this.get(i, j)));
}
}
return this;
})
`;
var staticMethod = `
(function %name%(matrix) {
var newMatrix = new this[Symbol.species](matrix);
return newMatrix.%name%();
})
`;
var inplaceMethodWithArgs = `
(function %name%(%args%) {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, %method%(this.get(i, j), %args%));
}
}
return this;
})
`;
var staticMethodWithArgs = `
(function %name%(matrix, %args%) {
var newMatrix = new this[Symbol.species](matrix);
return newMatrix.%name%(%args%);
})
`;
var inplaceMethodWithOneArgScalar = `
(function %name%S(value) {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, %method%(this.get(i, j), value));
}
}
return this;
})
`;
var inplaceMethodWithOneArgMatrix = `
(function %name%M(matrix) {
matrix = this.constructor.checkMatrix(matrix);
if (this.rows !== matrix.rows ||
this.columns !== matrix.columns) {
throw new RangeError('Matrices dimensions must be equal');
}
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.columns; j++) {
this.set(i, j, %method%(this.get(i, j), matrix.get(i, j)));
}
}
return this;
})
`;
var inplaceMethodWithOneArg = `
(function %name%(value) {
if (typeof value === 'number') return this.%name%S(value);
return this.%name%M(value);
})
`;
var staticMethodWithOneArg = staticMethodWithArgs;
var operators = [
// Arithmetic operators
['+', 'add'],
['-', 'sub', 'subtract'],
['*', 'mul', 'multiply'],
['/', 'div', 'divide'],
['%', 'mod', 'modulus'],
// Bitwise operators
['&', 'and'],
['|', 'or'],
['^', 'xor'],
['<<', 'leftShift'],
['>>', 'signPropagatingRightShift'],
['>>>', 'rightShift', 'zeroFillRightShift']
];
var i;
var eval2 = eval; // eslint-disable-line no-eval
for (var operator of operators) {
var inplaceOp = eval2(fillTemplateFunction(inplaceOperator, { name: operator[1], op: operator[0] }));
var inplaceOpS = eval2(fillTemplateFunction(inplaceOperatorScalar, { name: `${operator[1]}S`, op: operator[0] }));
var inplaceOpM = eval2(fillTemplateFunction(inplaceOperatorMatrix, { name: `${operator[1]}M`, op: operator[0] }));
var staticOp = eval2(fillTemplateFunction(staticOperator, { name: operator[1] }));
for (i = 1; i < operator.length; i++) {
Matrix.prototype[operator[i]] = inplaceOp;
Matrix.prototype[`${operator[i]}S`] = inplaceOpS;
Matrix.prototype[`${operator[i]}M`] = inplaceOpM;
Matrix[operator[i]] = staticOp;
}
}
var methods = [['~', 'not']];
[
'abs', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', 'cbrt', 'ceil',
'clz32', 'cos', 'cosh', 'exp', 'expm1', 'floor', 'fround', 'log', 'log1p',
'log10', 'log2', 'round', 'sign', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc'
].forEach(function (mathMethod) {
methods.push([`Math.${mathMethod}`, mathMethod]);
});
for (var method of methods) {
var inplaceMeth = eval2(fillTemplateFunction(inplaceMethod, { name: method[1], method: method[0] }));
var staticMeth = eval2(fillTemplateFunction(staticMethod, { name: method[1] }));
for (i = 1; i < method.length; i++) {
Matrix.prototype[method[i]] = inplaceMeth;
Matrix[method[i]] = staticMeth;
}
}
var methodsWithArgs = [['Math.pow', 1, 'pow']];
for (var methodWithArg of methodsWithArgs) {
var args = 'arg0';
for (i = 1; i < methodWithArg[1]; i++) {
args += `, arg${i}`;
}
if (methodWithArg[1] !== 1) {
var inplaceMethWithArgs = eval2(fillTemplateFunction(inplaceMethodWithArgs, {
name: methodWithArg[2],
method: methodWithArg[0],
args: args
}));
var staticMethWithArgs = eval2(fillTemplateFunction(staticMethodWithArgs, { name: methodWithArg[2], args: args }));
for (i = 2; i < methodWithArg.length; i++) {
Matrix.prototype[methodWithArg[i]] = inplaceMethWithArgs;
Matrix[methodWithArg[i]] = staticMethWithArgs;
}
} else {
var tmplVar = {
name: methodWithArg[2],
args: args,
method: methodWithArg[0]
};
var inplaceMethod2 = eval2(fillTemplateFunction(inplaceMethodWithOneArg, tmplVar));
var inplaceMethodS = eval2(fillTemplateFunction(inplaceMethodWithOneArgScalar, tmplVar));
var inplaceMethodM = eval2(fillTemplateFunction(inplaceMethodWithOneArgMatrix, tmplVar));
var staticMethod2 = eval2(fillTemplateFunction(staticMethodWithOneArg, tmplVar));
for (i = 2; i < methodWithArg.length; i++) {
Matrix.prototype[methodWithArg[i]] = inplaceMethod2;
Matrix.prototype[`${methodWithArg[i]}M`] = inplaceMethodM;
Matrix.prototype[`${methodWithArg[i]}S`] = inplaceMethodS;
Matrix[methodWithArg[i]] = staticMethod2;
}
}
}
function fillTemplateFunction(template, values) {
for (var value in values) {
template = template.replace(new RegExp(`%${value}%`, 'g'), values[value]);
}
return template;
}
return Matrix;
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/matrix.js
class matrix_Matrix extends AbstractMatrix(Array) {
constructor(nRows, nColumns) {
var i;
if (arguments.length === 1 && typeof nRows === 'number') {
return new Array(nRows);
}
if (matrix_Matrix.isMatrix(nRows)) {
return nRows.clone();
} else if (Number.isInteger(nRows) && nRows > 0) {
// Create an empty matrix
super(nRows);
if (Number.isInteger(nColumns) && nColumns > 0) {
for (i = 0; i < nRows; i++) {
this[i] = new Array(nColumns);
}
} else {
throw new TypeError('nColumns must be a positive integer');
}
} else if (Array.isArray(nRows)) {
// Copy the values from the 2D array
const matrix = nRows;
nRows = matrix.length;
nColumns = matrix[0].length;
if (typeof nColumns !== 'number' || nColumns === 0) {
throw new TypeError(
'Data must be a 2D array with at least one element'
);
}
super(nRows);
for (i = 0; i < nRows; i++) {
if (matrix[i].length !== nColumns) {
throw new RangeError('Inconsistent array dimensions');
}
this[i] = [].concat(matrix[i]);
}
} else {
throw new TypeError(
'First argument must be a positive number or an array'
);
}
this.rows = nRows;
this.columns = nColumns;
return this;
}
set(rowIndex, columnIndex, value) {
this[rowIndex][columnIndex] = value;
return this;
}
get(rowIndex, columnIndex) {
return this[rowIndex][columnIndex];
}
/**
* Removes a row from the given index
* @param {number} index - Row index
* @return {Matrix} this
*/
removeRow(index) {
checkRowIndex(this, index);
if (this.rows === 1) {
throw new RangeError('A matrix cannot have less than one row');
}
this.splice(index, 1);
this.rows -= 1;
return this;
}
/**
* Adds a row at the given index
* @param {number} [index = this.rows] - Row index
* @param {Array|Matrix} array - Array or vector
* @return {Matrix} this
*/
addRow(index, array) {
if (array === undefined) {
array = index;
index = this.rows;
}
checkRowIndex(this, index, true);
array = checkRowVector(this, array, true);
this.splice(index, 0, array);
this.rows += 1;
return this;
}
/**
* Removes a column from the given index
* @param {number} index - Column index
* @return {Matrix} this
*/
removeColumn(index) {
checkColumnIndex(this, index);
if (this.columns === 1) {
throw new RangeError('A matrix cannot have less than one column');
}
for (var i = 0; i < this.rows; i++) {
this[i].splice(index, 1);
}
this.columns -= 1;
return this;
}
/**
* Adds a column at the given index
* @param {number} [index = this.columns] - Column index
* @param {Array|Matrix} array - Array or vector
* @return {Matrix} this
*/
addColumn(index, array) {
if (typeof array === 'undefined') {
array = index;
index = this.columns;
}
checkColumnIndex(this, index, true);
array = checkColumnVector(this, array);
for (var i = 0; i < this.rows; i++) {
this[i].splice(index, 0, array[i]);
}
this.columns += 1;
return this;
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/wrap/WrapperMatrix1D.js
class WrapperMatrix1D_WrapperMatrix1D extends AbstractMatrix() {
/**
* @class WrapperMatrix1D
* @param {Array<number>} data
* @param {object} [options]
* @param {object} [options.rows = 1]
*/
constructor(data, options = {}) {
const { rows = 1 } = options;
if (data.length % rows !== 0) {
throw new Error('the data length is not divisible by the number of rows');
}
super();
this.rows = rows;
this.columns = data.length / rows;
this.data = data;
}
set(rowIndex, columnIndex, value) {
var index = this._calculateIndex(rowIndex, columnIndex);
this.data[index] = value;
return this;
}
get(rowIndex, columnIndex) {
var index = this._calculateIndex(rowIndex, columnIndex);
return this.data[index];
}
_calculateIndex(row, column) {
return row * this.columns + column;
}
static get [Symbol.species]() {
return matrix_Matrix;
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/wrap/WrapperMatrix2D.js
class WrapperMatrix2D_WrapperMatrix2D extends AbstractMatrix() {
/**
* @class WrapperMatrix2D
* @param {Array<Array<number>>} data
*/
constructor(data) {
super();
this.data = data;
this.rows = data.length;
this.columns = data[0].length;
}
set(rowIndex, columnIndex, value) {
this.data[rowIndex][columnIndex] = value;
return this;
}
get(rowIndex, columnIndex) {
return this.data[rowIndex][columnIndex];
}
static get [Symbol.species]() {
return matrix_Matrix;
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/wrap/wrap.js
/**
* @param {Array<Array<number>>|Array<number>} array
* @param {object} [options]
* @param {object} [options.rows = 1]
* @return {WrapperMatrix1D|WrapperMatrix2D}
*/
function wrap(array, options) {
if (Array.isArray(array)) {
if (array[0] && Array.isArray(array[0])) {
return new WrapperMatrix2D_WrapperMatrix2D(array);
} else {
return new WrapperMatrix1D_WrapperMatrix1D(array, options);
}
} else {
throw new Error('the argument is not an array');
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/qr.js
/**
* @class QrDecomposition
* @link https://github.com/lutzroeder/Mapack/blob/master/Source/QrDecomposition.cs
* @param {Matrix} value
*/
class qr_QrDecomposition {
constructor(value) {
value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value);
var qr = value.clone();
var m = value.rows;
var n = value.columns;
var rdiag = new Array(n);
var i, j, k, s;
for (k = 0; k < n; k++) {
var nrm = 0;
for (i = k; i < m; i++) {
nrm = hypotenuse(nrm, qr.get(i, k));
}
if (nrm !== 0) {
if (qr.get(k, k) < 0) {
nrm = -nrm;
}
for (i = k; i < m; i++) {
qr.set(i, k, qr.get(i, k) / nrm);
}
qr.set(k, k, qr.get(k, k) + 1);
for (j = k + 1; j < n; j++) {
s = 0;
for (i = k; i < m; i++) {
s += qr.get(i, k) * qr.get(i, j);
}
s = -s / qr.get(k, k);
for (i = k; i < m; i++) {
qr.set(i, j, qr.get(i, j) + s * qr.get(i, k));
}
}
}
rdiag[k] = -nrm;
}
this.QR = qr;
this.Rdiag = rdiag;
}
/**
* Solve a problem of least square (Ax=b) by using the QR decomposition. Useful when A is rectangular, but not working when A is singular.
* Example : We search to approximate x, with A matrix shape m*n, x vector size n, b vector size m (m > n). We will use :
* var qr = QrDecomposition(A);
* var x = qr.solve(b);
* @param {Matrix} value - Matrix 1D which is the vector b (in the equation Ax = b)
* @return {Matrix} - The vector x
*/
solve(value) {
value = matrix_Matrix.checkMatrix(value);
var qr = this.QR;
var m = qr.rows;
if (value.rows !== m) {
throw new Error('Matrix row dimensions must agree');
}
if (!this.isFullRank()) {
throw new Error('Matrix is rank deficient');
}
var count = value.columns;
var X = value.clone();
var n = qr.columns;
var i, j, k, s;
for (k = 0; k < n; k++) {
for (j = 0; j < count; j++) {
s = 0;
for (i = k; i < m; i++) {
s += qr[i][k] * X[i][j];
}
s = -s / qr[k][k];
for (i = k; i < m; i++) {
X[i][j] += s * qr[i][k];
}
}
}
for (k = n - 1; k >= 0; k--) {
for (j = 0; j < count; j++) {
X[k][j] /= this.Rdiag[k];
}
for (i = 0; i < k; i++) {
for (j = 0; j < count; j++) {
X[i][j] -= X[k][j] * qr[i][k];
}
}
}
return X.subMatrix(0, n - 1, 0, count - 1);
}
/**
*
* @return {boolean}
*/
isFullRank() {
var columns = this.QR.columns;
for (var i = 0; i < columns; i++) {
if (this.Rdiag[i] === 0) {
return false;
}
}
return true;
}
/**
*
* @return {Matrix}
*/
get upperTriangularMatrix() {
var qr = this.QR;
var n = qr.columns;
var X = new matrix_Matrix(n, n);
var i, j;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (i < j) {
X[i][j] = qr[i][j];
} else if (i === j) {
X[i][j] = this.Rdiag[i];
} else {
X[i][j] = 0;
}
}
}
return X;
}
/**
*
* @return {Matrix}
*/
get orthogonalMatrix() {
var qr = this.QR;
var rows = qr.rows;
var columns = qr.columns;
var X = new matrix_Matrix(rows, columns);
var i, j, k, s;
for (k = columns - 1; k >= 0; k--) {
for (i = 0; i < rows; i++) {
X[i][k] = 0;
}
X[k][k] = 1;
for (j = k; j < columns; j++) {
if (qr[k][k] !== 0) {
s = 0;
for (i = k; i < rows; i++) {
s += qr[i][k] * X[i][j];
}
s = -s / qr[k][k];
for (i = k; i < rows; i++) {
X[i][j] += s * qr[i][k];
}
}
}
}
return X;
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/decompositions.js
/**
* Computes the inverse of a Matrix
* @param {Matrix} matrix
* @param {boolean} [useSVD=false]
* @return {Matrix}
*/
function inverse(matrix, useSVD = false) {
matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix);
if (useSVD) {
return new svd_SingularValueDecomposition(matrix).inverse();
} else {
return solve(matrix, matrix_Matrix.eye(matrix.rows));
}
}
/**
*
* @param {Matrix} leftHandSide
* @param {Matrix} rightHandSide
* @param {boolean} [useSVD = false]
* @return {Matrix}
*/
function solve(leftHandSide, rightHandSide, useSVD = false) {
leftHandSide = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(leftHandSide);
rightHandSide = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(rightHandSide);
if (useSVD) {
return new svd_SingularValueDecomposition(leftHandSide).solve(rightHandSide);
} else {
return leftHandSide.isSquare()
? new lu_LuDecomposition(leftHandSide).solve(rightHandSide)
: new qr_QrDecomposition(leftHandSide).solve(rightHandSide);
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/linearDependencies.js
// function used by rowsDependencies
function xrange(n, exception) {
var range = [];
for (var i = 0; i < n; i++) {
if (i !== exception) {
range.push(i);
}
}
return range;
}
// function used by rowsDependencies
function dependenciesOneRow(
error,
matrix,
index,
thresholdValue = 10e-10,
thresholdError = 10e-10
) {
if (error > thresholdError) {
return new Array(matrix.rows + 1).fill(0);
} else {
var returnArray = matrix.addRow(index, [0]);
for (var i = 0; i < returnArray.rows; i++) {
if (Math.abs(returnArray.get(i, 0)) < thresholdValue) {
returnArray.set(i, 0, 0);
}
}
return returnArray.to1DArray();
}
}
/**
* Creates a matrix which represents the dependencies between rows.
* If a row is a linear combination of others rows, the result will be a row with the coefficients of this combination.
* For example : for A = [[2, 0, 0, 1], [0, 1, 6, 0], [0, 3, 0, 1], [0, 0, 1, 0], [0, 1, 2, 0]], the result will be [[0, 0, 0, 0, 0], [0, 0, 0, 4, 1], [0, 0, 0, 0, 0], [0, 0.25, 0, 0, -0.25], [0, 1, 0, -4, 0]]
* @param {Matrix} matrix
* @param {Object} [options] includes thresholdValue and thresholdError.
* @param {number} [options.thresholdValue = 10e-10] If an absolute value is inferior to this threshold, it will equals zero.
* @param {number} [options.thresholdError = 10e-10] If the error is inferior to that threshold, the linear combination found is accepted and the row is dependent from other rows.
* @return {Matrix} the matrix which represents the dependencies between rows.
*/
function linearDependencies(matrix, options = {}) {
const { thresholdValue = 10e-10, thresholdError = 10e-10 } = options;
var n = matrix.rows;
var results = new matrix_Matrix(n, n);
for (var i = 0; i < n; i++) {
var b = matrix_Matrix.columnVector(matrix.getRow(i));
var Abis = matrix.subMatrixRow(xrange(n, i)).transposeView();
var svd = new svd_SingularValueDecomposition(Abis);
var x = svd.solve(b);
var error = lib_es6(
matrix_Matrix.sub(b, Abis.mmul(x))
.abs()
.to1DArray()
);
results.setRow(
i,
dependenciesOneRow(error, x, i, thresholdValue, thresholdError)
);
}
return results;
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/evd.js
/**
* @class EigenvalueDecomposition
* @link https://github.com/lutzroeder/Mapack/blob/master/Source/EigenvalueDecomposition.cs
* @param {Matrix} matrix
* @param {object} [options]
* @param {boolean} [options.assumeSymmetric=false]
*/
class evd_EigenvalueDecomposition {
constructor(matrix, options = {}) {
const { assumeSymmetric = false } = options;
matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix);
if (!matrix.isSquare()) {
throw new Error('Matrix is not a square matrix');
}
var n = matrix.columns;
var V = getFilled2DArray(n, n, 0);
var d = new Array(n);
var e = new Array(n);
var value = matrix;
var i, j;
var isSymmetric = false;
if (assumeSymmetric) {
isSymmetric = true;
} else {
isSymmetric = matrix.isSymmetric();
}
if (isSymmetric) {
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
V[i][j] = value.get(i, j);
}
}
tred2(n, e, d, V);
tql2(n, e, d, V);
} else {
var H = getFilled2DArray(n, n, 0);
var ort = new Array(n);
for (j = 0; j < n; j++) {
for (i = 0; i < n; i++) {
H[i][j] = value.get(i, j);
}
}
orthes(n, H, ort, V);
hqr2(n, e, d, V, H);
}
this.n = n;
this.e = e;
this.d = d;
this.V = V;
}
/**
*
* @return {Array<number>}
*/
get realEigenvalues() {
return this.d;
}
/**
*
* @return {Array<number>}
*/
get imaginaryEigenvalues() {
return this.e;
}
/**
*
* @return {Matrix}
*/
get eigenvectorMatrix() {
if (!matrix_Matrix.isMatrix(this.V)) {
this.V = new matrix_Matrix(this.V);
}
return this.V;
}
/**
*
* @return {Matrix}
*/
get diagonalMatrix() {
var n = this.n;
var e = this.e;
var d = this.d;
var X = new matrix_Matrix(n, n);
var i, j;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
X[i][j] = 0;
}
X[i][i] = d[i];
if (e[i] > 0) {
X[i][i + 1] = e[i];
} else if (e[i] < 0) {
X[i][i - 1] = e[i];
}
}
return X;
}
}
function tred2(n, e, d, V) {
var f, g, h, i, j, k, hh, scale;
for (j = 0; j < n; j++) {
d[j] = V[n - 1][j];
}
for (i = n - 1; i > 0; i--) {
scale = 0;
h = 0;
for (k = 0; k < i; k++) {
scale = scale + Math.abs(d[k]);
}
if (scale === 0) {
e[i] = d[i - 1];
for (j = 0; j < i; j++) {
d[j] = V[i - 1][j];
V[i][j] = 0;
V[j][i] = 0;
}
} else {
for (k = 0; k < i; k++) {
d[k] /= scale;
h += d[k] * d[k];
}
f = d[i - 1];
g = Math.sqrt(h);
if (f > 0) {
g = -g;
}
e[i] = scale * g;
h = h - f * g;
d[i - 1] = f - g;
for (j = 0; j < i; j++) {
e[j] = 0;
}
for (j = 0; j < i; j++) {
f = d[j];
V[j][i] = f;
g = e[j] + V[j][j] * f;
for (k = j + 1; k <= i - 1; k++) {
g += V[k][j] * d[k];
e[k] += V[k][j] * f;
}
e[j] = g;
}
f = 0;
for (j = 0; j < i; j++) {
e[j] /= h;
f += e[j] * d[j];
}
hh = f / (h + h);
for (j = 0; j < i; j++) {
e[j] -= hh * d[j];
}
for (j = 0; j < i; j++) {
f = d[j];
g = e[j];
for (k = j; k <= i - 1; k++) {
V[k][j] -= f * e[k] + g * d[k];
}
d[j] = V[i - 1][j];
V[i][j] = 0;
}
}
d[i] = h;
}
for (i = 0; i < n - 1; i++) {
V[n - 1][i] = V[i][i];
V[i][i] = 1;
h = d[i + 1];
if (h !== 0) {
for (k = 0; k <= i; k++) {
d[k] = V[k][i + 1] / h;
}
for (j = 0; j <= i; j++) {
g = 0;
for (k = 0; k <= i; k++) {
g += V[k][i + 1] * V[k][j];
}
for (k = 0; k <= i; k++) {
V[k][j] -= g * d[k];
}
}
}
for (k = 0; k <= i; k++) {
V[k][i + 1] = 0;
}
}
for (j = 0; j < n; j++) {
d[j] = V[n - 1][j];
V[n - 1][j] = 0;
}
V[n - 1][n - 1] = 1;
e[0] = 0;
}
function tql2(n, e, d, V) {
var g, h, i, j, k, l, m, p, r, dl1, c, c2, c3, el1, s, s2, iter;
for (i = 1; i < n; i++) {
e[i - 1] = e[i];
}
e[n - 1] = 0;
var f = 0;
var tst1 = 0;
var eps = Number.EPSILON;
for (l = 0; l < n; l++) {
tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l]));
m = l;
while (m < n) {
if (Math.abs(e[m]) <= eps * tst1) {
break;
}
m++;
}
if (m > l) {
iter = 0;
do {
iter = iter + 1;
g = d[l];
p = (d[l + 1] - g) / (2 * e[l]);
r = hypotenuse(p, 1);
if (p < 0) {
r = -r;
}
d[l] = e[l] / (p + r);
d[l + 1] = e[l] * (p + r);
dl1 = d[l + 1];
h = g - d[l];
for (i = l + 2; i < n; i++) {
d[i] -= h;
}
f = f + h;
p = d[m];
c = 1;
c2 = c;
c3 = c;
el1 = e[l + 1];
s = 0;
s2 = 0;
for (i = m - 1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = hypotenuse(p, e[i]);
e[i + 1] = s * r;
s = e[i] / r;
c = p / r;
p = c * d[i] - s * g;
d[i + 1] = h + s * (c * g + s * d[i]);
for (k = 0; k < n; k++) {
h = V[k][i + 1];
V[k][i + 1] = s * V[k][i] + c * h;
V[k][i] = c * V[k][i] - s * h;
}
}
p = -s * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
} while (Math.abs(e[l]) > eps * tst1);
}
d[l] = d[l] + f;
e[l] = 0;
}
for (i = 0; i < n - 1; i++) {
k = i;
p = d[i];
for (j = i + 1; j < n; j++) {
if (d[j] < p) {
k = j;
p = d[j];
}
}
if (k !== i) {
d[k] = d[i];
d[i] = p;
for (j = 0; j < n; j++) {
p = V[j][i];
V[j][i] = V[j][k];
V[j][k] = p;
}
}
}
}
function orthes(n, H, ort, V) {
var low = 0;
var high = n - 1;
var f, g, h, i, j, m;
var scale;
for (m = low + 1; m <= high - 1; m++) {
scale = 0;
for (i = m; i <= high; i++) {
scale = scale + Math.abs(H[i][m - 1]);
}
if (scale !== 0) {
h = 0;
for (i = high; i >= m; i--) {
ort[i] = H[i][m - 1] / scale;
h += ort[i] * ort[i];
}
g = Math.sqrt(h);
if (ort[m] > 0) {
g = -g;
}
h = h - ort[m] * g;
ort[m] = ort[m] - g;
for (j = m; j < n; j++) {
f = 0;
for (i = high; i >= m; i--) {
f += ort[i] * H[i][j];
}
f = f / h;
for (i = m; i <= high; i++) {
H[i][j] -= f * ort[i];
}
}
for (i = 0; i <= high; i++) {
f = 0;
for (j = high; j >= m; j--) {
f += ort[j] * H[i][j];
}
f = f / h;
for (j = m; j <= high; j++) {
H[i][j] -= f * ort[j];
}
}
ort[m] = scale * ort[m];
H[m][m - 1] = scale * g;
}
}
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
V[i][j] = i === j ? 1 : 0;
}
}
for (m = high - 1; m >= low + 1; m--) {
if (H[m][m - 1] !== 0) {
for (i = m + 1; i <= high; i++) {
ort[i] = H[i][m - 1];
}
for (j = m; j <= high; j++) {
g = 0;
for (i = m; i <= high; i++) {
g += ort[i] * V[i][j];
}
g = g / ort[m] / H[m][m - 1];
for (i = m; i <= high; i++) {
V[i][j] += g * ort[i];
}
}
}
}
}
function hqr2(nn, e, d, V, H) {
var n = nn - 1;
var low = 0;
var high = nn - 1;
var eps = Number.EPSILON;
var exshift = 0;
var norm = 0;
var p = 0;
var q = 0;
var r = 0;
var s = 0;
var z = 0;
var iter = 0;
var i, j, k, l, m, t, w, x, y;
var ra, sa, vr, vi;
var notlast, cdivres;
for (i = 0; i < nn; i++) {
if (i < low || i > high) {
d[i] = H[i][i];
e[i] = 0;
}
for (j = Math.max(i - 1, 0); j < nn; j++) {
norm = norm + Math.abs(H[i][j]);
}
}
while (n >= low) {
l = n;
while (l > low) {
s = Math.abs(H[l - 1][l - 1]) + Math.abs(H[l][l]);
if (s === 0) {
s = norm;
}
if (Math.abs(H[l][l - 1]) < eps * s) {
break;
}
l--;
}
if (l === n) {
H[n][n] = H[n][n] + exshift;
d[n] = H[n][n];
e[n] = 0;
n--;
iter = 0;
} else if (l === n - 1) {
w = H[n][n - 1] * H[n - 1][n];
p = (H[n - 1][n - 1] - H[n][n]) / 2;
q = p * p + w;
z = Math.sqrt(Math.abs(q));
H[n][n] = H[n][n] + exshift;
H[n - 1][n - 1] = H[n - 1][n - 1] + exshift;
x = H[n][n];
if (q >= 0) {
z = p >= 0 ? p + z : p - z;
d[n - 1] = x + z;
d[n] = d[n - 1];
if (z !== 0) {
d[n] = x - w / z;
}
e[n - 1] = 0;
e[n] = 0;
x = H[n][n - 1];
s = Math.abs(x) + Math.abs(z);
p = x / s;
q = z / s;
r = Math.sqrt(p * p + q * q);
p = p / r;
q = q / r;
for (j = n - 1; j < nn; j++) {
z = H[n - 1][j];
H[n - 1][j] = q * z + p * H[n][j];
H[n][j] = q * H[n][j] - p * z;
}
for (i = 0; i <= n; i++) {
z = H[i][n - 1];
H[i][n - 1] = q * z + p * H[i][n];
H[i][n] = q * H[i][n] - p * z;
}
for (i = low; i <= high; i++) {
z = V[i][n - 1];
V[i][n - 1] = q * z + p * V[i][n];
V[i][n] = q * V[i][n] - p * z;
}
} else {
d[n - 1] = x + p;
d[n] = x + p;
e[n - 1] = z;
e[n] = -z;
}
n = n - 2;
iter = 0;
} else {
x = H[n][n];
y = 0;
w = 0;
if (l < n) {
y = H[n - 1][n - 1];
w = H[n][n - 1] * H[n - 1][n];
}
if (iter === 10) {
exshift += x;
for (i = low; i <= n; i++) {
H[i][i] -= x;
}
s = Math.abs(H[n][n - 1]) + Math.abs(H[n - 1][n - 2]);
x = y = 0.75 * s;
w = -0.4375 * s * s;
}
if (iter === 30) {
s = (y - x) / 2;
s = s * s + w;
if (s > 0) {
s = Math.sqrt(s);
if (y < x) {
s = -s;
}
s = x - w / ((y - x) / 2 + s);
for (i = low; i <= n; i++) {
H[i][i] -= s;
}
exshift += s;
x = y = w = 0.964;
}
}
iter = iter + 1;
m = n - 2;
while (m >= l) {
z = H[m][m];
r = x - z;
s = y - z;
p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
q = H[m + 1][m + 1] - z - r - s;
r = H[m + 2][m + 1];
s = Math.abs(p) + Math.abs(q) + Math.abs(r);
p = p / s;
q = q / s;
r = r / s;
if (m === l) {
break;
}
if (
Math.abs(H[m][m - 1]) * (Math.abs(q) + Math.abs(r)) <
eps *
(Math.abs(p) *
(Math.abs(H[m - 1][m - 1]) +
Math.abs(z) +
Math.abs(H[m + 1][m + 1])))
) {
break;
}
m--;
}
for (i = m + 2; i <= n; i++) {
H[i][i - 2] = 0;
if (i > m + 2) {
H[i][i - 3] = 0;
}
}
for (k = m; k <= n - 1; k++) {
notlast = k !== n - 1;
if (k !== m) {
p = H[k][k - 1];
q = H[k + 1][k - 1];
r = notlast ? H[k + 2][k - 1] : 0;
x = Math.abs(p) + Math.abs(q) + Math.abs(r);
if (x !== 0) {
p = p / x;
q = q / x;
r = r / x;
}
}
if (x === 0) {
break;
}
s = Math.sqrt(p * p + q * q + r * r);
if (p < 0) {
s = -s;
}
if (s !== 0) {
if (k !== m) {
H[k][k - 1] = -s * x;
} else if (l !== m) {
H[k][k - 1] = -H[k][k - 1];
}
p = p + s;
x = p / s;
y = q / s;
z = r / s;
q = q / p;
r = r / p;
for (j = k; j < nn; j++) {
p = H[k][j] + q * H[k + 1][j];
if (notlast) {
p = p + r * H[k + 2][j];
H[k + 2][j] = H[k + 2][j] - p * z;
}
H[k][j] = H[k][j] - p * x;
H[k + 1][j] = H[k + 1][j] - p * y;
}
for (i = 0; i <= Math.min(n, k + 3); i++) {
p = x * H[i][k] + y * H[i][k + 1];
if (notlast) {
p = p + z * H[i][k + 2];
H[i][k + 2] = H[i][k + 2] - p * r;
}
H[i][k] = H[i][k] - p;
H[i][k + 1] = H[i][k + 1] - p * q;
}
for (i = low; i <= high; i++) {
p = x * V[i][k] + y * V[i][k + 1];
if (notlast) {
p = p + z * V[i][k + 2];
V[i][k + 2] = V[i][k + 2] - p * r;
}
V[i][k] = V[i][k] - p;
V[i][k + 1] = V[i][k + 1] - p * q;
}
}
}
}
}
if (norm === 0) {
return;
}
for (n = nn - 1; n >= 0; n--) {
p = d[n];
q = e[n];
if (q === 0) {
l = n;
H[n][n] = 1;
for (i = n - 1; i >= 0; i--) {
w = H[i][i] - p;
r = 0;
for (j = l; j <= n; j++) {
r = r + H[i][j] * H[j][n];
}
if (e[i] < 0) {
z = w;
s = r;
} else {
l = i;
if (e[i] === 0) {
H[i][n] = w !== 0 ? -r / w : -r / (eps * norm);
} else {
x = H[i][i + 1];
y = H[i + 1][i];
q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
t = (x * s - z * r) / q;
H[i][n] = t;
H[i + 1][n] =
Math.abs(x) > Math.abs(z) ? (-r - w * t) / x : (-s - y * t) / z;
}
t = Math.abs(H[i][n]);
if (eps * t * t > 1) {
for (j = i; j <= n; j++) {
H[j][n] = H[j][n] / t;
}
}
}
}
} else if (q < 0) {
l = n - 1;
if (Math.abs(H[n][n - 1]) > Math.abs(H[n - 1][n])) {
H[n - 1][n - 1] = q / H[n][n - 1];
H[n - 1][n] = -(H[n][n] - p) / H[n][n - 1];
} else {
cdivres = cdiv(0, -H[n - 1][n], H[n - 1][n - 1] - p, q);
H[n - 1][n - 1] = cdivres[0];
H[n - 1][n] = cdivres[1];
}
H[n][n - 1] = 0;
H[n][n] = 1;
for (i = n - 2; i >= 0; i--) {
ra = 0;
sa = 0;
for (j = l; j <= n; j++) {
ra = ra + H[i][j] * H[j][n - 1];
sa = sa + H[i][j] * H[j][n];
}
w = H[i][i] - p;
if (e[i] < 0) {
z = w;
r = ra;
s = sa;
} else {
l = i;
if (e[i] === 0) {
cdivres = cdiv(-ra, -sa, w, q);
H[i][n - 1] = cdivres[0];
H[i][n] = cdivres[1];
} else {
x = H[i][i + 1];
y = H[i + 1][i];
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
vi = (d[i] - p) * 2 * q;
if (vr === 0 && vi === 0) {
vr =
eps *
norm *
(Math.abs(w) +
Math.abs(q) +
Math.abs(x) +
Math.abs(y) +
Math.abs(z));
}
cdivres = cdiv(
x * r - z * ra + q * sa,
x * s - z * sa - q * ra,
vr,
vi
);
H[i][n - 1] = cdivres[0];
H[i][n] = cdivres[1];
if (Math.abs(x) > Math.abs(z) + Math.abs(q)) {
H[i + 1][n - 1] = (-ra - w * H[i][n - 1] + q * H[i][n]) / x;
H[i + 1][n] = (-sa - w * H[i][n] - q * H[i][n - 1]) / x;
} else {
cdivres = cdiv(-r - y * H[i][n - 1], -s - y * H[i][n], z, q);
H[i + 1][n - 1] = cdivres[0];
H[i + 1][n] = cdivres[1];
}
}
t = Math.max(Math.abs(H[i][n - 1]), Math.abs(H[i][n]));
if (eps * t * t > 1) {
for (j = i; j <= n; j++) {
H[j][n - 1] = H[j][n - 1] / t;
H[j][n] = H[j][n] / t;
}
}
}
}
}
}
for (i = 0; i < nn; i++) {
if (i < low || i > high) {
for (j = i; j < nn; j++) {
V[i][j] = H[i][j];
}
}
}
for (j = nn - 1; j >= low; j--) {
for (i = low; i <= high; i++) {
z = 0;
for (k = low; k <= Math.min(j, high); k++) {
z = z + V[i][k] * H[k][j];
}
V[i][j] = z;
}
}
}
function cdiv(xr, xi, yr, yi) {
var r, d;
if (Math.abs(yr) > Math.abs(yi)) {
r = yi / yr;
d = yr + r * yi;
return [(xr + r * xi) / d, (xi - r * xr) / d];
} else {
r = yr / yi;
d = yi + r * yr;
return [(r * xr + xi) / d, (r * xi - xr) / d];
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/cholesky.js
/**
* @class CholeskyDecomposition
* @link https://github.com/lutzroeder/Mapack/blob/master/Source/CholeskyDecomposition.cs
* @param {Matrix} value
*/
class cholesky_CholeskyDecomposition {
constructor(value) {
value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value);
if (!value.isSymmetric()) {
throw new Error('Matrix is not symmetric');
}
var a = value;
var dimension = a.rows;
var l = new matrix_Matrix(dimension, dimension);
var positiveDefinite = true;
var i, j, k;
for (j = 0; j < dimension; j++) {
var Lrowj = l[j];
var d = 0;
for (k = 0; k < j; k++) {
var Lrowk = l[k];
var s = 0;
for (i = 0; i < k; i++) {
s += Lrowk[i] * Lrowj[i];
}
Lrowj[k] = s = (a.get(j, k) - s) / l[k][k];
d = d + s * s;
}
d = a.get(j, j) - d;
positiveDefinite &= d > 0;
l[j][j] = Math.sqrt(Math.max(d, 0));
for (k = j + 1; k < dimension; k++) {
l[j][k] = 0;
}
}
if (!positiveDefinite) {
throw new Error('Matrix is not positive definite');
}
this.L = l;
}
/**
*
* @param {Matrix} value
* @return {Matrix}
*/
solve(value) {
value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value);
var l = this.L;
var dimension = l.rows;
if (value.rows !== dimension) {
throw new Error('Matrix dimensions do not match');
}
var count = value.columns;
var B = value.clone();
var i, j, k;
for (k = 0; k < dimension; k++) {
for (j = 0; j < count; j++) {
for (i = 0; i < k; i++) {
B[k][j] -= B[i][j] * l[k][i];
}
B[k][j] /= l[k][k];
}
}
for (k = dimension - 1; k >= 0; k--) {
for (j = 0; j < count; j++) {
for (i = k + 1; i < dimension; i++) {
B[k][j] -= B[i][j] * l[i][k];
}
B[k][j] /= l[k][k];
}
}
return B;
}
/**
*
* @return {Matrix}
*/
get lowerTriangularMatrix() {
return this.L;
}
}
// CONCATENATED MODULE: ./node_modules/ml-matrix/src/index.js
/* concated harmony reexport default */__webpack_require__.d(__webpack_exports__, "default", function() { return matrix_Matrix; });
/* concated harmony reexport Matrix */__webpack_require__.d(__webpack_exports__, "Matrix", function() { return matrix_Matrix; });
/* concated harmony reexport abstractMatrix */__webpack_require__.d(__webpack_exports__, "abstractMatrix", function() { return AbstractMatrix; });
/* concated harmony reexport wrap */__webpack_require__.d(__webpack_exports__, "wrap", function() { return wrap; });
/* concated harmony reexport WrapperMatrix2D */__webpack_require__.d(__webpack_exports__, "WrapperMatrix2D", function() { return WrapperMatrix2D_WrapperMatrix2D; });
/* concated harmony reexport WrapperMatrix1D */__webpack_require__.d(__webpack_exports__, "WrapperMatrix1D", function() { return WrapperMatrix1D_WrapperMatrix1D; });
/* concated harmony reexport solve */__webpack_require__.d(__webpack_exports__, "solve", function() { return solve; });
/* concated harmony reexport inverse */__webpack_require__.d(__webpack_exports__, "inverse", function() { return inverse; });
/* concated harmony reexport linearDependencies */__webpack_require__.d(__webpack_exports__, "linearDependencies", function() { return linearDependencies; });
/* concated harmony reexport SingularValueDecomposition */__webpack_require__.d(__webpack_exports__, "SingularValueDecomposition", function() { return svd_SingularValueDecomposition; });
/* concated harmony reexport SVD */__webpack_require__.d(__webpack_exports__, "SVD", function() { return svd_SingularValueDecomposition; });
/* concated harmony reexport EigenvalueDecomposition */__webpack_require__.d(__webpack_exports__, "EigenvalueDecomposition", function() { return evd_EigenvalueDecomposition; });
/* concated harmony reexport EVD */__webpack_require__.d(__webpack_exports__, "EVD", function() { return evd_EigenvalueDecomposition; });
/* concated harmony reexport CholeskyDecomposition */__webpack_require__.d(__webpack_exports__, "CholeskyDecomposition", function() { return cholesky_CholeskyDecomposition; });
/* concated harmony reexport CHO */__webpack_require__.d(__webpack_exports__, "CHO", function() { return cholesky_CholeskyDecomposition; });
/* concated harmony reexport LuDecomposition */__webpack_require__.d(__webpack_exports__, "LuDecomposition", function() { return lu_LuDecomposition; });
/* concated harmony reexport LU */__webpack_require__.d(__webpack_exports__, "LU", function() { return lu_LuDecomposition; });
/* concated harmony reexport QrDecomposition */__webpack_require__.d(__webpack_exports__, "QrDecomposition", function() { return qr_QrDecomposition; });
/* concated harmony reexport QR */__webpack_require__.d(__webpack_exports__, "QR", function() { return qr_QrDecomposition; });
/***/ })
/******/ ]);
});