Spaces:
Running
on
Zero
Running
on
Zero
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
import torch | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
model_id = "ByteDance-Seed/Seed-Coder-8B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
).eval() | |
def format_conversation_history(chat_history): | |
messages = [] | |
for item in chat_history: | |
role = item["role"] | |
content = item["content"] | |
if isinstance(content, list): | |
content = content[0]["text"] if content and "text" in content[0] else str(content) | |
messages.append({"role": role, "content": content}) | |
return messages | |
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): | |
new_message = {"role": "user", "content": input_data} | |
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else [] | |
processed_history = format_conversation_history(chat_history) | |
messages = system_message + processed_history + [new_message] | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_tensors="pt" | |
).to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
outputs = [] | |
for text_chunk in streamer: | |
outputs.append(text_chunk) | |
yield "".join(outputs) | |
demo = gr.ChatInterface( | |
fn=generate_response, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=1024), | |
gr.Textbox( | |
label="System Prompt", | |
value="You are a helpful coding assistant specializing in generating accurate and efficient code.", | |
lines=4, | |
placeholder="Change system prompt" | |
), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), | |
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), | |
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) | |
], | |
examples=[ | |
[{"text": "Write a Python A* search algorithm to find the optimal path in a grid-based map for a pathfinding application."}], | |
[{"text": "Write a JavaScript function to validate email address and telephone number using regular expressions."}], | |
[{"text": "Write an HTML/CSS stylesheet to style a multi level navigation menu with hover effects and mobile compatibility"}], | |
], | |
cache_examples=False, | |
type="messages", | |
description=""" | |
# Seed-Coder-8B-Instruct | |
This model excelling in code generation, code completion, code editing and software engineering tasks and developed by ByteDance Seed team. | |
It pre-trained on 6 trillion token dataset supporting 89 programming languages. | |
""", | |
fill_height=True, | |
textbox=gr.Textbox( | |
label="Query Input", | |
placeholder="Type your prompt" | |
), | |
stop_btn="Stop Generation", | |
multimodal=False, | |
theme=gr.themes.Soft() | |
) | |
if __name__ == "__main__": | |
demo.launch() |