Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- .gitattributes +1 -0
- Dockerfile +13 -0
- data/Data.pdf +3 -0
- main.py +121 -0
- requirements.txt +13 -0
- vectors_db/index.faiss +0 -0
- vectors_db/index.pkl +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
data/Data.pdf filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
RUN useradd -m -u 1000 user
|
| 4 |
+
USER user
|
| 5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 6 |
+
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
|
| 9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 11 |
+
|
| 12 |
+
COPY --chown=user . /app
|
| 13 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
data/Data.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ef945caf75b8219067ce06bd625f8581c60c54d58d071ef8355d9cba9294d84
|
| 3 |
+
size 1378767
|
main.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
from langchain_groq import ChatGroq
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 7 |
+
from langchain.chains import create_retrieval_chain
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
| 10 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
+
from typing import Union
|
| 14 |
+
|
| 15 |
+
from fastapi import FastAPI
|
| 16 |
+
from pydantic import BaseModel
|
| 17 |
+
|
| 18 |
+
app = FastAPI()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
from dotenv import load_dotenv
|
| 22 |
+
import os
|
| 23 |
+
load_dotenv()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@app.get("/")
|
| 27 |
+
def read_root():
|
| 28 |
+
return {"Hello": "World"}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Query(BaseModel):
|
| 32 |
+
query_text: str
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
## load the GROQ And OpenAI API KEY
|
| 36 |
+
groq_api_key=os.getenv('GROQ_API_KEY')
|
| 37 |
+
os.environ["GOOGLE_API_KEY"]=os.getenv("GOOGLE_API_KEY")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
llm=ChatGroq(groq_api_key=groq_api_key,
|
| 41 |
+
model_name="Llama3-8b-8192")
|
| 42 |
+
|
| 43 |
+
prompt=ChatPromptTemplate.from_template(
|
| 44 |
+
"""
|
| 45 |
+
Answer the questions based on the provided context only.
|
| 46 |
+
Please provide the most accurate response based on the question
|
| 47 |
+
<context>
|
| 48 |
+
{context}
|
| 49 |
+
<context>
|
| 50 |
+
Questions:{input}
|
| 51 |
+
|
| 52 |
+
"""
|
| 53 |
+
)
|
| 54 |
+
## load the GROQ And OpenAI API KEY
|
| 55 |
+
|
| 56 |
+
def vector_embedding():
|
| 57 |
+
embeddings=GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
| 58 |
+
loader=PyPDFDirectoryLoader("./data") ## Data Ingestion
|
| 59 |
+
docs=loader.load() ## Document Loading
|
| 60 |
+
text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) ## Chunk Creation
|
| 61 |
+
final_documents=text_splitter.split_documents(docs[:20]) #splitting
|
| 62 |
+
vectors=FAISS.from_documents(final_documents,embeddings) #vector OpenAI embeddings
|
| 63 |
+
# dump the vectors as pickle file
|
| 64 |
+
vectors.save_local("vectors_db")
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@app.post("/groq")
|
| 70 |
+
def read_item(query: Query):
|
| 71 |
+
try:
|
| 72 |
+
embeddings=GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
| 73 |
+
vectors = FAISS.load_local("vectors_db", embeddings,allow_dangerous_deserialization=True)
|
| 74 |
+
except:
|
| 75 |
+
# vector_embedding()
|
| 76 |
+
# vectors=FAISS.load("vectors.pkl")
|
| 77 |
+
print("Vector Store Not Found run /setup")
|
| 78 |
+
return {"response":"Vector Store Not Found run /setup"}
|
| 79 |
+
# print(vectors)
|
| 80 |
+
prompt1 = query.query_text
|
| 81 |
+
if prompt1:
|
| 82 |
+
start=time.process_time()
|
| 83 |
+
document_chain=create_stuff_documents_chain(llm,prompt)
|
| 84 |
+
retriever=vectors.as_retriever()
|
| 85 |
+
retrieval_chain=create_retrieval_chain(retriever,document_chain)
|
| 86 |
+
response=retrieval_chain.invoke({'input':prompt1})
|
| 87 |
+
print("Response time :",time.process_time()-start)
|
| 88 |
+
return response['answer']
|
| 89 |
+
else:
|
| 90 |
+
return {"response":"No Query Found"}
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@app.get("/setup")
|
| 94 |
+
def setup():
|
| 95 |
+
vector_embedding()
|
| 96 |
+
return {"response":"Vector Store DB Is Ready"}
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# if prompt1:
|
| 101 |
+
# document_chain=create_stuff_documents_chain(llm,prompt)
|
| 102 |
+
# # retriever=st.session_state.vectors.as_retriever()
|
| 103 |
+
# retrieval_chain=create_retrieval_chain(retriever,document_chain)
|
| 104 |
+
# start=time.process_time()
|
| 105 |
+
# response=retrieval_chain.invoke({'input':prompt1})
|
| 106 |
+
# print("Response time :",time.process_time()-start)
|
| 107 |
+
# st.write(response['answer'])
|
| 108 |
+
|
| 109 |
+
# # With a streamlit expander
|
| 110 |
+
# with st.expander("Document Similarity Search"):
|
| 111 |
+
# # Find the relevant chunks
|
| 112 |
+
# for i, doc in enumerate(response["context"]):
|
| 113 |
+
# st.write(doc.page_content)
|
| 114 |
+
# st.write("--------------------------------")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
import uvicorn
|
| 121 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
faiss-cpu
|
| 2 |
+
groq
|
| 3 |
+
langchain-groq
|
| 4 |
+
PyPDF2
|
| 5 |
+
langchain_google_genai
|
| 6 |
+
langchain
|
| 7 |
+
# streamlit
|
| 8 |
+
langchain_community
|
| 9 |
+
python-dotenv
|
| 10 |
+
pypdf
|
| 11 |
+
google-cloud-aiplatform>=1.38
|
| 12 |
+
fastapi
|
| 13 |
+
uvicorn[standard]
|
vectors_db/index.faiss
ADDED
|
Binary file (230 kB). View file
|
|
|
vectors_db/index.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e30048f3de2b8bbb4f14bee30bda4e80e2b558bb112aa27fe78e4ba4db61eedb
|
| 3 |
+
size 74109
|