|
import os |
|
import tempfile |
|
from io import BytesIO |
|
import time |
|
import openai |
|
import streamlit as st |
|
from langchain.document_loaders import TextLoader |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from utils import compute_sha1_from_content |
|
from langchain.schema import Document |
|
from stats import add_usage |
|
|
|
|
|
|
|
|
|
def _transcribe_audio(api_key, audio_file, stats_db): |
|
openai.api_key = api_key |
|
transcript = "" |
|
|
|
with BytesIO(audio_file.read()) as audio_bytes: |
|
|
|
file_extension = os.path.splitext(audio_file.name)[-1] |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as temp_audio_file: |
|
temp_audio_file.write(audio_bytes.read()) |
|
temp_audio_file.seek(0) |
|
|
|
|
|
if st.secrets.self_hosted == "false": |
|
add_usage(stats_db, "embedding", "audio", metadata={"file_name": audio_file.name,"file_type": file_extension}) |
|
|
|
transcript = openai.Audio.translate("whisper-1", temp_audio_file) |
|
|
|
return transcript |
|
|
|
def process_audio(vector_store, file_name, stats_db): |
|
if st.secrets.self_hosted == "false": |
|
if file_name.size > 10000000: |
|
st.error("File size is too large. Please upload a file smaller than 1MB.") |
|
return |
|
file_sha = "" |
|
dateshort = time.strftime("%Y%m%d-%H%M%S") |
|
file_meta_name = f"audiotranscript_{dateshort}.txt" |
|
openai_api_key = st.secrets["openai_api_key"] |
|
transcript = _transcribe_audio(openai_api_key, file_name, stats_db) |
|
file_sha = compute_sha1_from_content(transcript.text.encode("utf-8")) |
|
|
|
file_size = len(transcript.text.encode("utf-8")) |
|
|
|
|
|
|
|
chunk_size = st.session_state['chunk_size'] |
|
chunk_overlap = st.session_state['chunk_overlap'] |
|
|
|
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
texts = text_splitter.split_text(transcript.text) |
|
|
|
docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha,"file_size": file_size, "file_name": file_meta_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for text in texts] |
|
|
|
if st.secrets.self_hosted == "false": |
|
add_usage(stats_db, "embedding", "audio", metadata={"file_name": file_meta_name,"file_type": ".txt", "chunk_size": chunk_size, "chunk_overlap": chunk_overlap}) |
|
vector_store.add_documents(docs_with_metadata) |
|
return vector_store |