menikev commited on
Commit
e03622b
1 Parent(s): d4b293d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -11
app.py CHANGED
@@ -63,7 +63,7 @@ color_palette = px.colors.sequential.Viridis
63
  # Visualisation for Domain Distribution
64
  def create_pie_chart(df, column, title):
65
  fig = px.pie(df, names=column, title=title, hole=0.35)
66
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), legend=dict(x=0.1, y=1), font=dict(size=10), title_x=0.5)
67
  fig.update_traces(marker=dict(colors=color_palette))
68
  return fig
69
 
@@ -71,7 +71,7 @@ def create_pie_chart(df, column, title):
71
  def create_gender_ethnicity_distribution_chart(df):
72
  df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity")
73
  fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35)
74
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), legend=dict(x=0.1, y=1), font=dict(size=10), title_x=0.5)
75
  return fig
76
 
77
  # Visualization for Sentiment Distribution Across Domains
@@ -79,7 +79,7 @@ def create_sentiment_distribution_chart(df):
79
  df['Discrimination'] = df['Discrimination'].replace({"Non Discriminative": "Non-Discriminative"}) # Assuming typo in the original script
80
  domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts')
81
  fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', title="Sentiment Distribution Across Domains", barmode='stack')
82
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=10), title_x=0.5)
83
  return fig
84
 
85
  # Visualization for Correlation between Sentiment and Discrimination
@@ -96,7 +96,7 @@ def create_sentiment_discrimination_grouped_chart(df):
96
  # Proceeding to plot only if we have data to plot
97
  if not melted_df.empty:
98
  fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination")
99
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=10), title_x=0.5)
100
  return fig
101
  else:
102
  return "No data to display for the selected filters."
@@ -111,7 +111,7 @@ def create_top_negative_sentiment_domains_chart(df):
111
  colors = ['limegreen', 'crimson', 'darkcyan']
112
  fig = px.bar(domain_counts_subset, x='Count', y='Domain', title='Top Domains with Negative Sentiment', color='Domain',
113
  orientation='h', color_discrete_sequence=colors)
114
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Negative sentiment content Count", yaxis_title="Domain", font=dict(size=10), title_x=0.5)
115
  return fig
116
 
117
  # Function for Key Phrases in Negative Sentiment Content Chart
@@ -122,26 +122,37 @@ def create_key_phrases_negative_sentiment_chart(df):
122
  ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
123
  ngram_freq.columns = ['frequency', 'ngram']
124
  fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Negative Sentiment Content')
125
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=10), title_x=0.5)
126
  return fig
127
 
128
  # Function for Key Phrases in Positive Sentiment Content Chart
129
  def create_key_phrases_positive_sentiment_chart(df):
 
 
 
 
130
  cv = CountVectorizer(ngram_range=(3, 3), stop_words='english')
131
- trigrams = cv.fit_transform(df['Content'][df['Sentiment'] == 'Positive'])
 
 
 
 
132
  count_values = trigrams.toarray().sum(axis=0)
133
  ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
134
  ngram_freq.columns = ['frequency', 'ngram']
 
 
135
  fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Positive Sentiment Content')
136
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=10), title_x=0.5)
137
- return fig
 
138
 
139
  # Function for Prevalence of Discriminatory Content Chart
140
  def create_prevalence_discriminatory_content_chart(df):
141
  domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
142
  fig = px.bar(domain_counts, x=domain_counts.index, y=['Discriminative', 'Non-Discriminative'], barmode='group',
143
  title='Prevalence of Discriminatory Content')
144
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Domain", yaxis_title="Count", font=dict(size=10), title_x=0.5)
145
  return fig
146
 
147
  # Function for Top Domains with Discriminatory Content Chart
@@ -152,7 +163,7 @@ def create_top_discriminatory_domains_chart(df):
152
  domain_counts_subset = domain_counts_subset.rename(columns={'Discriminative': 'Count'})
153
  fig = px.bar(domain_counts_subset, x='Count', y=domain_counts_subset.index, orientation='h',
154
  title='Top Domains with Discriminatory Content')
155
- fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Discriminatory Content Count", yaxis_title="Domain", font=dict(size=10), title_x=0.5)
156
  return fig
157
 
158
  # Function for Channel-wise Sentiment Over Time Chart
 
63
  # Visualisation for Domain Distribution
64
  def create_pie_chart(df, column, title):
65
  fig = px.pie(df, names=column, title=title, hole=0.35)
66
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), legend=dict(x=0.1, y=1), font=dict(size=10))
67
  fig.update_traces(marker=dict(colors=color_palette))
68
  return fig
69
 
 
71
  def create_gender_ethnicity_distribution_chart(df):
72
  df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity")
73
  fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35)
74
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), legend=dict(x=0.1, y=1), font=dict(size=10))
75
  return fig
76
 
77
  # Visualization for Sentiment Distribution Across Domains
 
79
  df['Discrimination'] = df['Discrimination'].replace({"Non Discriminative": "Non-Discriminative"}) # Assuming typo in the original script
80
  domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts')
81
  fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', title="Sentiment Distribution Across Domains", barmode='stack')
82
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=10))
83
  return fig
84
 
85
  # Visualization for Correlation between Sentiment and Discrimination
 
96
  # Proceeding to plot only if we have data to plot
97
  if not melted_df.empty:
98
  fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination")
99
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=10))
100
  return fig
101
  else:
102
  return "No data to display for the selected filters."
 
111
  colors = ['limegreen', 'crimson', 'darkcyan']
112
  fig = px.bar(domain_counts_subset, x='Count', y='Domain', title='Top Domains with Negative Sentiment', color='Domain',
113
  orientation='h', color_discrete_sequence=colors)
114
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Negative sentiment content Count", yaxis_title="Domain", font=dict(size=10))
115
  return fig
116
 
117
  # Function for Key Phrases in Negative Sentiment Content Chart
 
122
  ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
123
  ngram_freq.columns = ['frequency', 'ngram']
124
  fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Negative Sentiment Content')
125
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=10))
126
  return fig
127
 
128
  # Function for Key Phrases in Positive Sentiment Content Chart
129
  def create_key_phrases_positive_sentiment_chart(df):
130
+ # Filter the DataFrame for positive sentiments and drop any rows with NaN in 'Content'
131
+ positive_df = df[df['Sentiment'] == 'Positive'].dropna(subset=['Content'])
132
+
133
+ # Create a CountVectorizer instance
134
  cv = CountVectorizer(ngram_range=(3, 3), stop_words='english')
135
+
136
+ # Apply CountVectorizer only on non-null content
137
+ trigrams = cv.fit_transform(positive_df['Content'])
138
+
139
+ # Sum the frequency of each n-gram and create a DataFrame
140
  count_values = trigrams.toarray().sum(axis=0)
141
  ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
142
  ngram_freq.columns = ['frequency', 'ngram']
143
+
144
+ # Create the bar chart
145
  fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Positive Sentiment Content')
146
+
147
+ # Update layout settings to fit and look better
148
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=10))
149
 
150
  # Function for Prevalence of Discriminatory Content Chart
151
  def create_prevalence_discriminatory_content_chart(df):
152
  domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
153
  fig = px.bar(domain_counts, x=domain_counts.index, y=['Discriminative', 'Non-Discriminative'], barmode='group',
154
  title='Prevalence of Discriminatory Content')
155
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Domain", yaxis_title="Count", font=dict(size=10))
156
  return fig
157
 
158
  # Function for Top Domains with Discriminatory Content Chart
 
163
  domain_counts_subset = domain_counts_subset.rename(columns={'Discriminative': 'Count'})
164
  fig = px.bar(domain_counts_subset, x='Count', y=domain_counts_subset.index, orientation='h',
165
  title='Top Domains with Discriminatory Content')
166
+ fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Discriminatory Content Count", yaxis_title="Domain", font=dict(size=10))
167
  return fig
168
 
169
  # Function for Channel-wise Sentiment Over Time Chart