|
import streamlit as st |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from sklearn.feature_extraction.text import CountVectorizer |
|
import seaborn as sns |
|
import plotly.express as px |
|
import plotly.io as pio |
|
import plotly.graph_objects as go |
|
from run import run_pipeline |
|
|
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
def load_and_clean_data(): |
|
df1 = pd.read_csv("data/reviewed_social_media_english.csv") |
|
df2 = pd.read_csv("data/reviewed_news_english.csv") |
|
df3 = pd.read_csv("data/tamil_social_media.csv") |
|
df4 = pd.read_csv("data/tamil_news.csv") |
|
|
|
|
|
df_combined = pd.concat([df1, df2, df3, df4]) |
|
|
|
|
|
df_combined['Domain'] = df_combined['Domain'].replace({"MUSLIM": "Muslim", "nan": pd.NA, "None": pd.NA, "Other-Ethnic": "Other-Ethnicity"}) |
|
|
|
|
|
df_combined['Sentiment'] = df_combined['Sentiment'].replace({"nan": pd.NA, "None": pd.NA, "No": pd.NA}) |
|
df_combined['Discrimination'] = df_combined['Discrimination'].replace({"nan": pd.NA, "None": pd.NA, "No": pd.NA}) |
|
|
|
|
|
df_combined.dropna(subset=['Domain', 'Sentiment', 'Discrimination'], inplace=True) |
|
|
|
return df_combined |
|
|
|
df = load_and_clean_data() |
|
|
|
|
|
|
|
page_names = ["Analytics Dashboard for Domain Predictions", "GESI Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"] |
|
page = st.sidebar.selectbox("Choose a page", page_names) |
|
|
|
|
|
domain_options = df['Domain'].dropna().unique() |
|
channel_options = df['Channel'].dropna().unique() |
|
sentiment_options = df['Sentiment'].dropna().unique() |
|
discrimination_options = df['Discrimination'].dropna().unique() |
|
|
|
domain_filter = st.sidebar.multiselect('Select Domain', options=domain_options, default=domain_options) |
|
channel_filter = st.sidebar.multiselect('Select Channel', options=channel_options, default=channel_options) |
|
sentiment_filter = st.sidebar.multiselect('Select Sentiment', options=sentiment_options, default=sentiment_options) |
|
discrimination_filter = st.sidebar.multiselect('Select Discrimination', options=discrimination_options, default=discrimination_options) |
|
|
|
|
|
|
|
df_filtered = df[(df['Domain'].isin(domain_filter)) & |
|
(df['Channel'].isin(channel_filter)) & |
|
(df['Sentiment'].isin(sentiment_filter)) & |
|
(df['Discrimination'].isin(discrimination_filter))] |
|
|
|
|
|
color_palette = px.colors.sequential.Viridis |
|
|
|
|
|
def render_prediction_page(): |
|
st.title("Streamlit Analytics Dashboard for Model Predictions") |
|
st.write(""" |
|
Welcome to the interactive analytics dashboard that brings to life the nuanced assessment of textual content. |
|
Dive into the insightful world of language processing where each sentence you enter is meticulously evaluated |
|
for its domain relevance and sentiment connotation. |
|
Instant Analysis: Enter any text snippet and get immediate predictions with our sophisticated model that assesses content with nuanced precision. |
|
Domain Identification: Discover the domain categorization of your text, providing clarity on the subject matter with a quantifiable domain score. |
|
""") |
|
|
|
|
|
user_input = st.text_area("Enter Text/Content here to analyze", height=150) |
|
|
|
if st.button("Perform Contextual Analysis"): |
|
|
|
prediction = run_pipeline(user_input) |
|
|
|
|
|
domain_label = prediction.get("domain_label", "Unknown") |
|
domain_score = prediction.get("domain_score", 0) |
|
discrimination_label = prediction.get("discrimination_label", "Unknown") |
|
discrimination_score = prediction.get("discrimination_score", 0) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.markdown("#### Domain Label") |
|
st.markdown(f"## {domain_label}") |
|
st.progress(domain_score) |
|
|
|
with col2: |
|
st.markdown("#### Discrimination Label") |
|
st.markdown(f"## {discrimination_label}") |
|
st.progress(discrimination_score) |
|
|
|
col3, col4 = st.columns(2) |
|
|
|
with col3: |
|
|
|
fig_domain = go.Figure(go.Indicator( |
|
mode="gauge+number", |
|
value=domain_score, |
|
domain={'x': [0, 1], 'y': [0, 1]}, |
|
title={'text': "Domain Score"}, |
|
gauge={'axis': {'range': [None, 1]}})) |
|
st.plotly_chart(fig_domain, use_container_width=True) |
|
|
|
with col4: |
|
|
|
fig_discrimination = go.Figure(go.Indicator( |
|
mode="gauge+number", |
|
value=discrimination_score, |
|
domain={'x': [0, 1], 'y': [0, 1]}, |
|
title={'text': "Discrimination Score"}, |
|
gauge={'axis': {'range': [None, 1]}})) |
|
st.plotly_chart(fig_discrimination, use_container_width=True) |
|
|
|
|
|
def create_pie_chart(df, column, title): |
|
fig = px.pie(df, names=column, title=title, hole=0.35) |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), legend=dict(x=0.1, y=1), font=dict(size=10)) |
|
fig.update_traces(marker=dict(colors=color_palette)) |
|
return fig |
|
|
|
|
|
def create_gender_ethnicity_distribution_chart(df): |
|
df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity") |
|
fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35) |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), legend=dict(x=0.1, y=1), font=dict(size=10)) |
|
return fig |
|
|
|
|
|
def create_sentiment_distribution_chart(df): |
|
domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts') |
|
domain_counts = domain_counts.sort_values('counts') |
|
|
|
|
|
color_map = {'Negative': 'red', 'Positive': 'blue', 'Neutral': 'lightblue'} |
|
|
|
fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', color_discrete_map=color_map, |
|
title="Sentiment Distribution Across Domains", barmode='stack') |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=10)) |
|
return fig |
|
|
|
|
|
def create_sentiment_discrimination_grouped_chart(df): |
|
|
|
crosstab_df = pd.crosstab(df['Sentiment'], df['Discrimination']) |
|
|
|
|
|
value_vars = crosstab_df.columns.intersection(['Discriminative', 'Non Discriminative']).tolist() |
|
|
|
|
|
melted_df = pd.melt(crosstab_df.reset_index(), id_vars='Sentiment', value_vars=value_vars, var_name='Discrimination', value_name='Count') |
|
|
|
|
|
if not melted_df.empty: |
|
fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination") |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=10)) |
|
return fig |
|
else: |
|
return "No data to display for the selected filters." |
|
|
|
|
|
def create_top_negative_sentiment_domains_chart(df): |
|
domain_counts = df.groupby(['Domain', 'Sentiment']).size().unstack(fill_value=0) |
|
domain_counts.sort_values(by='Negative', ascending=False, inplace=True) |
|
domain_counts_subset = domain_counts.iloc[:3, [0]] |
|
domain_counts_subset = domain_counts_subset.rename(columns={domain_counts_subset.columns[0]: 'Count'}) |
|
domain_counts_subset = domain_counts_subset.reset_index() |
|
colors = ['limegreen', 'crimson', 'darkcyan'] |
|
fig = px.bar(domain_counts_subset, x='Count', y='Domain', title='Top Domains with Negative Sentiment', color='Domain', |
|
orientation='h', color_discrete_sequence=colors) |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Negative sentiment content Count", yaxis_title="Domain", font=dict(size=10)) |
|
return fig |
|
|
|
|
|
def create_key_phrases_negative_sentiment_chart(df): |
|
cv = CountVectorizer(ngram_range=(3,3), stop_words='english') |
|
trigrams = cv.fit_transform(df['Content'][df['Sentiment'] == 'Negative']) |
|
count_values = trigrams.toarray().sum(axis=0) |
|
ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True)) |
|
ngram_freq.columns = ['frequency', 'ngram'] |
|
fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Negative Sentiment Content') |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=10)) |
|
return fig |
|
|
|
|
|
def create_key_phrases_positive_sentiment_chart(df): |
|
|
|
positive_df = df[df['Sentiment'] == 'Positive'].dropna(subset=['Content']) |
|
|
|
|
|
cv = CountVectorizer(ngram_range=(3, 3), stop_words='english') |
|
|
|
|
|
trigrams = cv.fit_transform(positive_df['Content']) |
|
|
|
|
|
count_values = trigrams.toarray().sum(axis=0) |
|
ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True)) |
|
ngram_freq.columns = ['frequency', 'ngram'] |
|
|
|
|
|
fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Positive Sentiment Content') |
|
|
|
|
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Frequency", yaxis_title="Trigram", font=dict(size=10)) |
|
|
|
return fig |
|
|
|
|
|
def create_prevalence_discriminatory_content_chart(df): |
|
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0) |
|
fig = px.bar(domain_counts, x=domain_counts.index, y=['Discriminative', 'Non-Discriminative'], barmode='group', |
|
title='Prevalence of Discriminatory Content') |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Domain", yaxis_title="Count", font=dict(size=10)) |
|
return fig |
|
|
|
|
|
def create_top_discriminatory_domains_chart(df): |
|
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0) |
|
domain_counts.sort_values(by='Discriminative', ascending=False, inplace=True) |
|
domain_counts_subset = domain_counts.iloc[:3] |
|
domain_counts_subset = domain_counts_subset.rename(columns={'Discriminative': 'Count'}) |
|
fig = px.bar(domain_counts_subset, x='Count', y=domain_counts_subset.index, orientation='h', |
|
title='Top Domains with Discriminatory Content') |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Discriminatory Content Count", yaxis_title="Domain", font=dict(size=10)) |
|
return fig |
|
|
|
|
|
def create_sentiment_distribution_by_channel_chart(df): |
|
sentiment_by_channel = df.groupby(['Channel', 'Sentiment']).size().reset_index(name='counts') |
|
color_map = {'Positive': 'blue', 'Neutral': 'lightblue', 'Negative': 'red'} |
|
fig = px.bar(sentiment_by_channel, x='Channel', y='counts', color='Sentiment', title="Sentiment Distribution by Channel", barmode='group', color_discrete_map=color_map) |
|
fig.update_layout(margin=dict(l=20, r=20, t=50, b=20), xaxis_title="Channel", yaxis_title="Counts", font=dict(size=10), title_x=0.5) |
|
return fig |
|
|
|
|
|
def create_channel_discrimination_chart(df): |
|
channel_discrimination = df.groupby(['Channel', 'Discrimination']).size().unstack(fill_value=0) |
|
fig = px.bar(channel_discrimination, x=channel_discrimination.index, y=['Discriminative', 'Non-Discriminative'], barmode='group') |
|
fig.update_layout(title='Channel-wise Distribution of Discriminative Content', margin=dict(l=20, r=20, t=50, b=20), font=dict(size=10), title_x=0.5) |
|
return fig |
|
|
|
|
|
def render_dashboard(page, df_filtered): |
|
if page == "Analytics Dashboard for Domain Predictions": |
|
render_prediction_page() |
|
elif page == "GESI Overview": |
|
st.title(" GESI Overview Dashboard") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.plotly_chart(create_pie_chart(df_filtered, 'Domain', 'Distribution of Domains')) |
|
with col2: |
|
st.plotly_chart(create_gender_ethnicity_distribution_chart(df_filtered)) |
|
|
|
col3, col4 = st.columns(2) |
|
with col3: |
|
st.plotly_chart(create_sentiment_distribution_chart(df_filtered)) |
|
with col4: |
|
chart = create_sentiment_discrimination_grouped_chart(df_filtered) |
|
if isinstance(chart, str): |
|
st.write(chart) |
|
else: |
|
st.plotly_chart(chart) |
|
|
|
elif page == "Sentiment Analysis": |
|
st.title("Sentiment Analysis Dashboard") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.plotly_chart(create_sentiment_distribution_chart(df_filtered)) |
|
with col2: |
|
st.plotly_chart(create_top_negative_sentiment_domains_chart(df_filtered)) |
|
|
|
col3, col4 = st.columns(2) |
|
with col3: |
|
st.plotly_chart(create_key_phrases_negative_sentiment_chart(df_filtered)) |
|
with col4: |
|
st.plotly_chart(create_key_phrases_positive_sentiment_chart(df_filtered)) |
|
|
|
elif page == "Discrimination Analysis": |
|
st.title("Discrimination Analysis Dashboard") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.plotly_chart(create_prevalence_discriminatory_content_chart(df_filtered)) |
|
with col2: |
|
st.plotly_chart(create_top_discriminatory_domains_chart(df_filtered)) |
|
|
|
elif page == "Channel Analysis": |
|
st.title("Channel Analysis Dashboard") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.plotly_chart(create_sentiment_distribution_by_channel_chart(df_filtered)) |
|
with col2: |
|
st.plotly_chart(create_channel_discrimination_chart(df_filtered)) |
|
|
|
|
|
|
|
render_dashboard(page, df_filtered) |