Spaces:
Runtime error
Runtime error
Update elo.py
Browse files
elo.py
CHANGED
@@ -14,25 +14,21 @@ def calculate_elo(old_rating, opponent_rating, score, k_factor=32):
|
|
14 |
expected_score = 1 / (1 + 10 ** ((opponent_rating - old_rating) / 400))
|
15 |
new_rating = old_rating + k_factor * (score - expected_score)
|
16 |
return new_rating
|
17 |
-
|
18 |
def update_elo_ratings(ratings_dataset, winner, loser, k_factor=32):
|
19 |
-
|
20 |
-
Update ELO ratings for two players in a Hugging Face dataset.
|
21 |
-
|
22 |
-
:param ratings_dataset: A Hugging Face dataset of current ELO ratings.
|
23 |
-
:param winner: The name of the winning player.
|
24 |
-
:param loser: The name of the losing player.
|
25 |
-
:param k_factor: The K-factor used in ELO rating (default is 32).
|
26 |
-
:return: Updated ELO ratings as a Hugging Face dataset.
|
27 |
-
"""
|
28 |
-
# Convert the Hugging Face dataset to a pandas DataFrame for easier manipulation
|
29 |
ratings_df = pd.DataFrame(ratings_dataset)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Extract old ratings
|
32 |
winner_old_rating = ratings_df.loc[ratings_df['bot_name'] == winner, 'elo_rating'].iloc[0]
|
33 |
loser_old_rating = ratings_df.loc[ratings_df['bot_name'] == loser, 'elo_rating'].iloc[0]
|
34 |
|
35 |
-
|
36 |
# Calculate new ratings
|
37 |
winner_new_rating = calculate_elo(winner_old_rating, loser_old_rating, 1, k_factor)
|
38 |
loser_new_rating = calculate_elo(loser_old_rating, winner_old_rating, 0, k_factor)
|
@@ -44,4 +40,4 @@ def update_elo_ratings(ratings_dataset, winner, loser, k_factor=32):
|
|
44 |
# Convert the DataFrame back to a Hugging Face dataset
|
45 |
updated_ratings_dataset = Dataset.from_pandas(ratings_df)
|
46 |
|
47 |
-
return updated_ratings_dataset
|
|
|
14 |
expected_score = 1 / (1 + 10 ** ((opponent_rating - old_rating) / 400))
|
15 |
new_rating = old_rating + k_factor * (score - expected_score)
|
16 |
return new_rating
|
17 |
+
|
18 |
def update_elo_ratings(ratings_dataset, winner, loser, k_factor=32):
|
19 |
+
# Convert the Hugging Face dataset to a pandas DataFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
ratings_df = pd.DataFrame(ratings_dataset)
|
21 |
|
22 |
+
# Check and add new players if they don't exist in the dataset
|
23 |
+
for player in [winner, loser]:
|
24 |
+
if player not in ratings_df['bot_name'].values:
|
25 |
+
new_player = {'bot_name': player, 'elo_rating': 1200}
|
26 |
+
ratings_df = ratings_df.append(new_player, ignore_index=True)
|
27 |
+
|
28 |
# Extract old ratings
|
29 |
winner_old_rating = ratings_df.loc[ratings_df['bot_name'] == winner, 'elo_rating'].iloc[0]
|
30 |
loser_old_rating = ratings_df.loc[ratings_df['bot_name'] == loser, 'elo_rating'].iloc[0]
|
31 |
|
|
|
32 |
# Calculate new ratings
|
33 |
winner_new_rating = calculate_elo(winner_old_rating, loser_old_rating, 1, k_factor)
|
34 |
loser_new_rating = calculate_elo(loser_old_rating, winner_old_rating, 0, k_factor)
|
|
|
40 |
# Convert the DataFrame back to a Hugging Face dataset
|
41 |
updated_ratings_dataset = Dataset.from_pandas(ratings_df)
|
42 |
|
43 |
+
return updated_ratings_dataset
|