Spaces:
Runtime error
Runtime error
from functools import partial | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from torch.nn.utils.rnn import pad_sequence | |
from entmax import entmax_bisect | |
# nucleus | |
def top_p(logits, thres = 0.9): | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cum_probs > (1 - thres) | |
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() | |
sorted_indices_to_remove[:, 0] = 0 | |
sorted_logits[sorted_indices_to_remove] = float('-inf') | |
return sorted_logits.scatter(1, sorted_indices, sorted_logits) | |
# topk | |
def top_k(logits, thres = 0.9): | |
k = int((1 - thres) * logits.shape[-1]) | |
val, ind = torch.topk(logits, k) | |
probs = torch.full_like(logits, float('-inf')) | |
probs.scatter_(1, ind, val) | |
return probs | |
# entmax | |
ENTMAX_ALPHA = 1.3 | |
entmax = entmax_bisect | |
class AutoregressiveWrapper(nn.Module): | |
def __init__(self, net, ignore_index = -100, pad_value = 0): | |
super().__init__() | |
self.pad_value = pad_value | |
self.ignore_index = ignore_index | |
self.net = net | |
self.max_seq_len = net.max_seq_len | |
def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs): | |
device = start_tokens.device | |
was_training = self.net.training | |
num_dims = len(start_tokens.shape) | |
if num_dims == 1: | |
start_tokens = start_tokens[None, :] | |
b, t = start_tokens.shape | |
self.net.eval() | |
out = start_tokens | |
mask = kwargs.pop('mask', None) | |
if mask is None: | |
mask = torch.full_like(out, True, dtype=torch.bool, device=out.device) | |
for _ in range(seq_len): | |
x = out[:, -self.max_seq_len:] | |
mask = mask[:, -self.max_seq_len:] | |
logits = self.net(x, mask=mask, **kwargs)[:, -1, :] | |
if filter_logits_fn in {top_k, top_p}: | |
filtered_logits = filter_logits_fn(logits, thres = filter_thres) | |
probs = F.softmax(filtered_logits / temperature, dim=-1) | |
elif filter_logits_fn is entmax: | |
probs = entmax(logits / temperature, alpha = ENTMAX_ALPHA, dim=-1) | |
sample = torch.multinomial(probs, 1) | |
out = torch.cat((out, sample), dim=-1) | |
mask = F.pad(mask, (0, 1), value=True) | |
if eos_token is not None and (sample == eos_token).all(): | |
break | |
out = out[:, t:] | |
if num_dims == 1: | |
out = out.squeeze(0) | |
self.net.train(was_training) | |
return out | |
def forward(self, x, **kwargs): | |
pad = partial(pad_sequence, batch_first = True, padding_value = self.pad_value) | |
xi = x[:, :-1] | |
xo = x[:, 1:] | |
# help auto-solve a frequent area of confusion around input masks in auto-regressive | |
# if user supplies a mask that is only off by one from the source sequence, resolve it for them | |
mask = kwargs.pop('mask', None) | |
if mask is not None and mask.shape[1] == x.shape[1]: | |
mask = mask[:, :-1] | |
kwargs.update(mask = mask) | |
out = self.net(xi, **kwargs) | |
loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index) | |
return loss | |