myTest01 / models /x_transformers /autoregressive_wrapper.py
meng2003's picture
Upload 85 files
bc32eea
from functools import partial
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from entmax import entmax_bisect
# nucleus
def top_p(logits, thres = 0.9):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > (1 - thres)
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = 0
sorted_logits[sorted_indices_to_remove] = float('-inf')
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
# topk
def top_k(logits, thres = 0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
# entmax
ENTMAX_ALPHA = 1.3
entmax = entmax_bisect
class AutoregressiveWrapper(nn.Module):
def __init__(self, net, ignore_index = -100, pad_value = 0):
super().__init__()
self.pad_value = pad_value
self.ignore_index = ignore_index
self.net = net
self.max_seq_len = net.max_seq_len
@torch.no_grad()
def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs):
device = start_tokens.device
was_training = self.net.training
num_dims = len(start_tokens.shape)
if num_dims == 1:
start_tokens = start_tokens[None, :]
b, t = start_tokens.shape
self.net.eval()
out = start_tokens
mask = kwargs.pop('mask', None)
if mask is None:
mask = torch.full_like(out, True, dtype=torch.bool, device=out.device)
for _ in range(seq_len):
x = out[:, -self.max_seq_len:]
mask = mask[:, -self.max_seq_len:]
logits = self.net(x, mask=mask, **kwargs)[:, -1, :]
if filter_logits_fn in {top_k, top_p}:
filtered_logits = filter_logits_fn(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
elif filter_logits_fn is entmax:
probs = entmax(logits / temperature, alpha = ENTMAX_ALPHA, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
mask = F.pad(mask, (0, 1), value=True)
if eos_token is not None and (sample == eos_token).all():
break
out = out[:, t:]
if num_dims == 1:
out = out.squeeze(0)
self.net.train(was_training)
return out
def forward(self, x, **kwargs):
pad = partial(pad_sequence, batch_first = True, padding_value = self.pad_value)
xi = x[:, :-1]
xo = x[:, 1:]
# help auto-solve a frequent area of confusion around input masks in auto-regressive
# if user supplies a mask that is only off by one from the source sequence, resolve it for them
mask = kwargs.pop('mask', None)
if mask is not None and mask.shape[1] == x.shape[1]:
mask = mask[:, :-1]
kwargs.update(mask = mask)
out = self.net(xi, **kwargs)
loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index)
return loss