myTest01 / models /mowgli_model.py
meng2003's picture
Upload 85 files
bc32eea
import torch
import numpy as np
from models.transformer import BasicTransformerModel
from models import BaseModel
from models.flowplusplus import FlowPlusPlus
import ast
from torch import nn
import math
from .util.generation import autoregressive_generation_multimodal
from models.cdvae import ConditionalDiscreteVAE
class MowgliModel(BaseModel):
def __init__(self, opt):
super().__init__(opt)
input_mods = self.input_mods
output_mods = self.output_mods
dins = self.dins
douts = self.douts
input_lengths = self.input_lengths
output_lengths = self.output_lengths
self.input_mod_nets = []
self.output_mod_nets = []
self.output_mod_mean_nets = []
self.output_mod_vaes = []
self.conditioning_seq_lens = []
self.module_names = []
self.vae_temp = opt.vae_temp
if opt.cond_vae or opt.stage2:
for i, mod in enumerate(input_mods):
net = BasicTransformerModel(opt.dhid, dins[i], opt.nhead, opt.dhid, 2, opt.dropout, self.device, use_pos_emb=True, input_length=input_lengths[i], use_x_transformers=opt.use_x_transformers, opt=opt)
if opt.cond_vae and opt.stage2:
for param in net.parameters():
param.requires_grad = False
name = "_input_"+mod
setattr(self,"net"+name, net)
self.input_mod_nets.append(net)
self.module_names.append(name)
for i, mod in enumerate(output_mods):
# import pdb;pdb.set_trace()
vae = ConditionalDiscreteVAE(
input_shape = (output_lengths[i], 1),
channels = douts[i],
num_layers = opt.vae_num_layers, # number of downsamples - ex. 256 / (2 ** 3) = (32 x 32 feature map)
num_tokens = opt.vae_num_tokens, # number of visual tokens. in the paper, they used 8192, but could be smaller for downsized projects
codebook_dim = opt.vae_codebook_dim, # codebook dimension
hidden_dim = opt.vae_dhid, # hidden dimension
num_resnet_blocks = opt.vae_num_resnet_blocks, # number of resnet blocks
temperature = opt.vae_temp, # gumbel softmax temperature, the lower this is, the harder the discretization
straight_through = opt.vae_hard, # straight-through for gumbel softmax. unclear if it is better one way or the other
cond_dim = opt.dhid,
cond_vae = opt.cond_vae,
prior_nhead = opt.prior_nhead,
prior_dhid = opt.prior_dhid,
prior_nlayers = opt.prior_nlayers,
prior_dropout = opt.prior_dropout,
prior_use_pos_emb = not opt.prior_no_use_pos_emb,
prior_use_x_transformers = opt.prior_use_x_transformers,
opt = opt
)
if opt.stage2:
for param in vae.encoder.parameters():
param.requires_grad = False
for param in vae.decoder.parameters():
param.requires_grad = False
name = "_output_vae_"+mod
setattr(self, "net"+name, vae)
self.output_mod_vaes.append(vae)
self.conditioning_seq_lens.append(np.prod(vae.codebook_layer_shape))
if opt.cond_vae or opt.stage2:
net = BasicTransformerModel(opt.dhid, opt.dhid, opt.nhead, opt.dhid, opt.nlayers, opt.dropout, self.device, use_pos_emb=opt.use_pos_emb_output, input_length=sum(input_lengths), use_x_transformers=opt.use_x_transformers, opt=opt)
name = "_output_"+mod
setattr(self, "net"+name, net)
self.output_mod_nets.append(net)
self.module_names.append(name)
if opt.cond_vae and opt.stage2:
for param in net.parameters():
param.requires_grad = False
if opt.residual:
if self.opt.cond_concat_dims:
net = nn.Linear(opt.dhid,douts[i])
else:
net = nn.Linear(opt.dhid,opt.douts[i])
if opt.cond_vae and opt.stage2:
for param in net.parameters():
param.requires_grad = False
name="_output_mean_encoder"
setattr(self, "net"+name, net)
self.output_mod_mean_nets.append(net)
self.mean_loss = nn.MSELoss()
self.inputs = []
self.targets = []
self.mse_loss = 0
self.nll_loss = 0
self.prior_loss_weight = opt.prior_loss_weight_initial
def name(self):
return "mowgli"
@staticmethod
def modify_commandline_options(parser, opt):
parser.add_argument('--dhid', type=int, default=512)
# parser.add_argument('--conditioning_seq_lens', type=str, default=None, help="the number of outputs of the conditioning transformers to feed (meaning the number of elements along the sequence dimension)")
parser.add_argument('--nlayers', type=int, default=6)
parser.add_argument('--nhead', type=int, default=8)
parser.add_argument('--vae_num_layers', type=int, default=3)
parser.add_argument('--vae_num_tokens', type=int, default=2048)
parser.add_argument('--vae_codebook_dim', type=int, default=512)
parser.add_argument('--vae_dhid', type=int, default=64)
parser.add_argument('--prior_dhid', type=int, default=512)
parser.add_argument('--prior_nhead', type=int, default=8)
parser.add_argument('--prior_nlayers', type=int, default=8)
parser.add_argument('--prior_dropout', type=float, default=0)
parser.add_argument('--prior_loss_weight_initial', type=float, default=0)
parser.add_argument('--prior_loss_weight_warmup_epochs', type=float, default=100)
parser.add_argument('--max_prior_loss_weight', type=float, default=0, help="max value of prior loss weight during stage 1 (e.g. 0.01 is a good value)")
parser.add_argument('--vae_num_resnet_blocks', type=int, default=1)
parser.add_argument('--vae_temp', type=float, default=1.0)
parser.add_argument('--anneal_rate', type=float, default=1e-6)
parser.add_argument('--temp_min', type=float, default=0.5)
parser.add_argument('--vae_hard', action='store_true', help="whether to use the hard one-hot vector as output and use the straight through gradient estimator, for discrete latents")
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--scales', type=str, default="[[10,0]]")
parser.add_argument('--residual', action='store_true', help="whether to use the vae to predict the residual around a determnisitic mean")
parser.add_argument('--use_pos_emb_output', action='store_true', help="whether to use positional embeddings for output modality transformers")
parser.add_argument('--use_rotary_pos_emb', action='store_true', help="whether to use rotary position embeddings")
parser.add_argument('--use_x_transformers', action='store_true', help="whether to use rotary position embeddings")
parser.add_argument('--prior_use_x_transformers', action='store_true', help="whether to use rotary position embeddings")
parser.add_argument('--prior_no_use_pos_emb', action='store_true', help="dont use positional embeddings for the prior transformer")
parser.add_argument('--stage2', action='store_true', help="stage2: train the prior, rather than the VAE")
parser.add_argument('--cond_vae', action='store_true', help="whether to use a conditional vae")
return parser
def forward(self, data, temp=1.0):
# in lightning, forward defines the prediction/inference actions
opt=self.opt
latents = []
for i, mod in enumerate(self.input_mods):
latents.append(self.input_mod_nets[i].forward(data[i]))
latent = torch.cat(latents)
outputs = []
if self.opt.residual:
for i, mod in enumerate(self.output_mods):
trans_output = self.output_mod_nets[i].forward(latent)[:self.conditioning_seq_lens[i]]
trans_predicted_mean_latents = self.output_mod_nets[i].forward(latent)[self.conditioning_seq_lens[i]:self.conditioning_seq_lens[i]+self.output_lengths[i]]
predicted_mean = self.output_mod_mean_nets[i](trans_predicted_mean_latents)
# residual, _ = self.output_mod_glows[i](x=None, cond=trans_output.permute(1,0,2), reverse=True)
residual = self.output_mod_vaes[i].generate(trans_output.permute(1,2,0), temp=temp)
residual = residual.squeeze(-1)
output = predicted_mean + residual.permute(2,0,1)
outputs.append(output)
else:
for i, mod in enumerate(self.output_mods):
trans_output = self.output_mod_nets[i].forward(latent)[:self.conditioning_seq_lens[i]]
output = self.output_mod_vaes[i].generate(trans_output.permute(1,2,0), temp=temp)
# import pdb;pdb.set_trace()
output = output.squeeze(-1)
outputs.append(output.permute(2,0,1))
return outputs
def on_train_epoch_start(self):
self.prior_loss_weight = self.opt.max_prior_loss_weight * min(self.current_epoch/self.opt.prior_loss_weight_warmup_epochs, 1)
self.vae_temp = max(self.vae_temp * math.exp(-self.opt.anneal_rate * self.global_step), self.opt.temp_min)
def training_step(self, batch, batch_idx):
opt = self.opt
self.set_inputs(batch)
# print(self.input_mod_nets[0].encoder1.weight.data)
# print(self.targets[0])
if opt.cond_vae or opt.stage2:
latents = []
for i, mod in enumerate(self.input_mods):
latents.append(self.input_mod_nets[i].forward(self.inputs[i]))
latent = torch.cat(latents)
# print(latent)
if self.opt.residual:
nll_loss = 0
mse_loss = 0
accuracies = []
for i, mod in enumerate(self.output_mods):
trans_output = self.output_mod_nets[i].forward(latent)
latents1 = trans_output[:self.conditioning_seq_lens[i]]
latents2 = latents1
trans_predicted_mean_latents = trans_output[self.conditioning_seq_lens[i]:self.conditioning_seq_lens[i]+self.output_lengths[i]]
predicted_mean = self.output_mod_mean_nets[i](trans_predicted_mean_latents)
vae = self.output_mod_vaes[i]
if not self.opt.stage2:
nll_loss += vae((self.targets[i] - predicted_mean).permute(1,2,0), cond=latents1.permute(1,2,0), return_loss=True, temp=self.vae_temp) #time, batch, features -> batch, features, time
if self.opt.max_prior_loss_weight > 0:
prior_loss, accuracy = vae.prior_logp((self.targets[i] - predicted_mean).permute(1,2,0), cond=latents2.permute(1,2,0), return_accuracy=True)
accuracies.append(accuracy)
nll_loss += self.prior_loss_weight * prior_loss
else:
prior_loss, accuracy = vae.prior_logp((self.targets[i] - predicted_mean).permute(1,2,0), cond=latents2.permute(1,2,0), return_accuracy=True, detach_cond=True)
nll_loss += prior_loss
accuracies.append(accuracy)
mse_loss += 100*self.mean_loss(predicted_mean[i], self.targets[i])
loss = nll_loss + mse_loss
self.mse_loss = mse_loss
self.nll_loss = nll_loss
self.log('mse_loss', mse_loss)
self.log('nll_loss', nll_loss)
if len(accuracies) > 0:
self.log('accuracy', torch.mean(torch.stack(accuracies)))
else:
loss = 0
accuracies = []
# import pdb;pdb.set_trace()
for i, mod in enumerate(self.output_mods):
output1 = self.output_mod_nets[i].forward(latent)[:self.conditioning_seq_lens[i]]
output2 = output1
vae = self.output_mod_vaes[i]
if not self.opt.stage2:
loss += vae(self.targets[i].permute(1,2,0), cond=output1.permute(1,2,0), return_loss=True, temp=self.vae_temp) #time, batch, features -> batch, features, time
if self.opt.max_prior_loss_weight > 0:
prior_loss, accuracy = vae.prior_logp(self.targets[i].permute(1,2,0), cond=output2.permute(1,2,0), return_accuracy=True)
loss += self.prior_loss_weight * prior_loss
accuracies.append(accuracy)
else:
prior_loss, accuracy = vae.prior_logp(self.targets[i].permute(1,2,0), cond=output2.permute(1,2,0), return_accuracy=True, detach_cond=True)
##prior_loss, accuracy = vae.prior_logp(self.targets[i].permute(1,2,0), return_accuracy=True, detach_cond=True)
loss += prior_loss
accuracies.append(accuracy)
else:
loss = 0
for i, mod in enumerate(self.output_mods):
vae = self.output_mod_vaes[i]
loss += vae(self.targets[i].permute(1,2,0), cond=None, return_loss=True, temp=self.vae_temp) #time, batch, features -> batch, features, time
self.log('loss', loss)
if opt.cond_vae or opt.stage2:
if len(accuracies) > 0:
self.log('accuracy', torch.mean(torch.stack(accuracies)))
# print(loss)
# for p in self.output_mod_nets[0].parameters():
# print(p.norm())
return loss
def test_step(self, batch, batch_idx):
if self.opt.residual:
self.eval()
loss = self.training_step(batch, batch_idx)
# print(loss)
return {"test_loss": loss, "test_mse_loss": self.mse_loss, "test_nll_loss": self.nll_loss}
else:
return super().test_step(batch, batch_idx)
def test_epoch_end(self, outputs):
if self.opt.residual:
avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
avg_mse_loss = torch.stack([x['test_mse_loss'] for x in outputs]).mean()
avg_nll_loss = torch.stack([x['test_nll_loss'] for x in outputs]).mean()
logs = {'test_loss': avg_loss, 'test_mse_loss': avg_mse_loss, 'test_nll_loss': avg_nll_loss}
return {'log': logs}
else:
return super().test_epoch_end(outputs)
#to help debug XLA stuff, like missing ops, or data loading/compiling bottlenecks
# see https://youtu.be/iwtpwQRdb3Y?t=1056
# def on_epoch_end(self):
# import torch_xla.core.xla_model as xm
# import torch_xla.debug.metrics as met
# xm.master_print(met.metrics_report())
#def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx,
# optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
# optimizer.zero_grad()