Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.utils import weight_norm | |
from models.util import concat_elu #,WNConv2d | |
from models.transformer import BasicTransformerModel | |
class TransformerNN(nn.Module): | |
"""Neural network used to parametrize the transformations of an MLCoupling. | |
An `NN` is a stack of blocks, where each block consists of the following | |
two layers connected in a residual fashion: | |
1. Conv: input -> nonlinearit -> conv3x3 -> nonlinearity -> gate | |
2. Attn: input -> conv1x1 -> multihead self-attention -> gate, | |
where gate refers to a 1×1 convolution that doubles the number of channels, | |
followed by a gated linear unit (Dauphin et al., 2016). | |
The convolutional layer is identical to the one used by PixelCNN++ | |
(Salimans et al., 2017), and the multi-head self attention mechanism we | |
use is identical to the one in the Transformer (Vaswani et al., 2017). | |
Args: | |
in_channels (int): Number of channels in the input. | |
out_channels (int): Number of channels in the output. | |
num_channels (int): Number of channels in each block of the network. | |
num_blocks (int): Number of blocks in the network. | |
num_components (int): Number of components in the mixture. | |
drop_prob (float): Dropout probability. | |
use_attn (bool): Use attention in each block. | |
aux_channels (int): Number of channels in optional auxiliary input. | |
""" | |
def __init__(self, in_channels, out_channels, num_channels, num_layers, num_heads, num_components, drop_prob, use_pos_emb, use_rel_pos_emb, input_length, concat_dims, output_length): | |
#import pdb;pdb.set_trace() | |
super(TransformerNN, self).__init__() | |
self.k = num_components # k = number of mixture components | |
# import pdb;pdb.set_trace() | |
self.transformer = BasicTransformerModel(out_channels * (2 + 3 * self.k), in_channels, num_heads, num_channels, num_layers, drop_prob, use_pos_emb=use_pos_emb, use_rel_pos_emb=use_rel_pos_emb, input_length=input_length) | |
self.rescale = weight_norm(Rescale(out_channels)) | |
self.out_channels = out_channels | |
self.concat_dims = concat_dims | |
self.output_length = output_length | |
def forward(self, x, aux=None): | |
b, c, h, w = x.size() | |
# import pdb;pdb.set_trace() | |
x = x.squeeze(-1) # only squeeze the w dimension (important coz otherwise it would squeeze batch dim if theres only one element in minibatch.. | |
# import pdb;pdb.set_trace() | |
x = x.permute(2,0,1) | |
# import pdb;pdb.set_trace() | |
if self.concat_dims: | |
x = self.transformer(x) | |
# x = torch.mean(self.transformer(x), dim=0, keepdim=True) | |
# x = 0.5*x + 0.5*torch.mean(x, dim=0, keepdim=True) | |
# x = self.transformer(x)[:1] | |
else: | |
x = self.transformer(x)[:self.output_length] | |
# import pdb;pdb.set_trace() | |
x = x.permute(1,2,0) | |
# Split into components and post-process | |
if self.concat_dims: | |
x = x.view(b, -1, self.out_channels, h, w) | |
# x = x.view(b, -1, self.out_channels, 1, w) | |
else: | |
x = x.view(b, -1, self.out_channels, self.output_length, w) | |
s, t, pi, mu, scales = x.split((1, 1, self.k, self.k, self.k), dim=1) | |
s = self.rescale(torch.tanh(s.squeeze(1))) | |
t = t.squeeze(1) | |
scales = scales.clamp(min=-7) # From the code in original Flow++ paper | |
return s, t, pi, mu, scales | |
class Rescale(nn.Module): | |
"""Per-channel rescaling. Need a proper `nn.Module` so we can wrap it | |
with `torch.nn.utils.weight_norm`. | |
Args: | |
num_channels (int): Number of channels in the input. | |
""" | |
def __init__(self, num_channels): | |
super(Rescale, self).__init__() | |
self.weight = nn.Parameter(torch.ones(num_channels, 1, 1)) | |
def forward(self, x): | |
x = self.weight * x | |
return x | |