meng2003's picture
Upload 85 files
bc32eea
"""Logistic distribution functions."""
import torch
import torch.nn.functional as F
from models.util import safe_log
def _log_pdf(x, mean, log_scale):
"""Element-wise log density of the logistic distribution."""
z = (x - mean) * torch.exp(-log_scale)
log_p = z - log_scale - 2 * F.softplus(z)
return log_p
def _log_cdf(x, mean, log_scale):
"""Element-wise log CDF of the logistic distribution."""
z = (x - mean) * torch.exp(-log_scale)
log_p = F.logsigmoid(z)
return log_p
def mixture_log_pdf(x, prior_logits, means, log_scales):
"""Log PDF of a mixture of logistic distributions."""
log_ps = F.log_softmax(prior_logits, dim=1) \
+ _log_pdf(x.unsqueeze(1), means, log_scales)
log_p = torch.logsumexp(log_ps, dim=1)
return log_p
def mixture_log_cdf(x, prior_logits, means, log_scales):
"""Log CDF of a mixture of logistic distributions."""
log_ps = F.log_softmax(prior_logits, dim=1) \
+ _log_cdf(x.unsqueeze(1), means, log_scales)
log_p = torch.logsumexp(log_ps, dim=1)
return log_p
def mixture_inv_cdf(y, prior_logits, means, log_scales,
eps=1e-10, max_iters=100):
"""Inverse CDF of a mixture of logisitics. Iterative algorithm."""
if y.min() <= 0 or y.max() >= 1:
raise RuntimeError('Inverse logisitic CDF got y outside (0, 1)')
def body(x_, lb_, ub_):
cur_y = torch.exp(mixture_log_cdf(x_, prior_logits, means,
log_scales))
gt = (cur_y > y).type(y.dtype)
lt = 1 - gt
new_x_ = gt * (x_ + lb_) / 2. + lt * (x_ + ub_) / 2.
new_lb = gt * lb_ + lt * x_
new_ub = gt * x_ + lt * ub_
return new_x_, new_lb, new_ub
x = torch.zeros_like(y)
max_scales = torch.sum(torch.exp(log_scales), dim=1, keepdim=True)
lb, _ = (means - 20 * max_scales).min(dim=1)
ub, _ = (means + 20 * max_scales).max(dim=1)
diff = float('inf')
i = 0
while diff > eps and i < max_iters:
new_x, lb, ub = body(x, lb, ub)
diff = (new_x - x).abs().max()
x = new_x
i += 1
return x
def inverse(x, reverse=False):
"""Inverse logistic function."""
if reverse:
z = torch.sigmoid(x)
ldj = F.softplus(x) + F.softplus(-x)
else:
z = -safe_log(x.reciprocal() - 1.)
ldj = -safe_log(x) - safe_log(1. - x)
return z, ldj