Spaces:
Runtime error
Runtime error
import numpy as np | |
# import librosa | |
from pathlib import Path | |
import json | |
import os.path | |
import sys | |
import argparse | |
import pickle | |
import torch | |
THIS_DIR = os.path.dirname(os.path.abspath(__file__)) | |
ROOT_DIR = os.path.abspath(os.path.join(THIS_DIR, os.pardir)) | |
DATA_DIR = os.path.join(ROOT_DIR, 'data') | |
sys.path.append(ROOT_DIR) | |
from utils import distribute_tasks | |
from analysis.pymo.parsers import BVHParser | |
from analysis.pymo.data import Joint, MocapData | |
from analysis.pymo.preprocessing import * | |
from sklearn.pipeline import Pipeline | |
import json | |
parser = argparse.ArgumentParser(description="Extract features from filenames") | |
parser.add_argument("data_path", type=str, help="Directory contining Beat Saber level folders") | |
parser.add_argument("--files_extension", type=str, help="file extension (the stuff after the base filename) to match") | |
parser.add_argument("--name_processing_function", type=str, default="dance_style", help="function for processing the names") | |
parser.add_argument("--replace_existing", action="store_true") | |
args = parser.parse_args() | |
# makes arugments into global variables of the same name, used later in the code | |
globals().update(vars(args)) | |
data_path = Path(data_path) | |
## distributing tasks accross nodes ## | |
from mpi4py import MPI | |
comm = MPI.COMM_WORLD | |
rank = comm.Get_rank() | |
size = comm.Get_size() | |
print(rank) | |
assert size == 1 # this should be done with one process | |
files = sorted(data_path.glob('**/*.'+files_extension), key=lambda path: path.parent.__str__()) | |
# tasks = distribute_tasks(candidate_motion_files,rank,size) | |
import name_processing_functions | |
func = getattr(name_processing_functions, name_processing_function) | |
labels = list(map(func,files)) | |
unique_labels = np.unique(list(labels)) | |
print(unique_labels) | |
label_index = {c:i for i,c in enumerate(unique_labels)} | |
label_index_reverse = {i:c for i,c in enumerate(unique_labels)} | |
with open(str(data_path) + "/" + files_extension+"."+name_processing_function+'class_index.json', 'w') as f: | |
json.dump(label_index, f) | |
with open(str(data_path) + "/" + files_extension+"."+name_processing_function+'class_index_reverse.json', 'w') as f: | |
json.dump(label_index_reverse, f) | |
for file,label in zip(files,labels): | |
# print(file, label) | |
feature_name = str(file)+"."+name_processing_function | |
feature = np.array([label_index[label]]) | |
np.save(feature_name, feature) | |