myTest01 / analysis /pymo /rotation_tools.py
meng2003's picture
Upload 357 files
2d5fdd1
'''
Tools for Manipulating and Converting 3D Rotations
By Omid Alemi
Created: June 12, 2017
Adapted from that matlab file...
'''
import math
import numpy as np
import transforms3d as t3d
from analysis.pymo.Quaternions import Quaternions
def deg2rad(x):
return x/180*math.pi
def rad2deg(x):
return x/math.pi*180
def unroll(rots):
return unroll_1(rots)
def unroll_1(rots):
new_rots = rots.copy()
# Compute angles and alternative rotation angles
angs = np.linalg.norm(rots, axis=1)
alt_angs=2*np.pi-angs
#find discontinuities
d_angs = np.diff(angs, axis=0)
d_angs2 = alt_angs[1:]-angs[:-1]
# swps = np.where(np.abs(d_angs2)<np.abs(d_angs))[0] & np.where(np.abs(d_angs2)<0.2)[0]
swps = np.where(np.abs(d_angs2)<np.abs(d_angs))[0]
# print("unroll swaps", len(swps))
# print(np.abs(d_angs2)[swps])
#reshape into intervals where we should unroll the rotations
isodd = swps.shape[0] % 2 == 1
if isodd:
swps = np.append(swps, rots.shape[0]-1)
intv = 1+swps.reshape((swps.shape[0]//2, 2))
for ii in range(intv.shape[0]):
new_ax = -rots[intv[ii,0]:intv[ii,1],:]/np.tile(angs[intv[ii,0]:intv[ii,1], None], (1,3))
new_angs = alt_angs[intv[ii,0]:intv[ii,1]]
new_rots[intv[ii,0]:intv[ii,1],:] = new_ax*np.tile(new_angs[:, None], (1,3))
return new_rots
def unroll_2(rots):
new_rots = rots.copy()
# Compute angles and alternative rotation angles
angs = np.linalg.norm(rots, axis=1)
dotprod = np.einsum('ij,ij->i', rots[:-1,:], rots[1:,:])
#ax = rots/np.tile(angs[:, None], (1,3))
#d_ax = np.linalg.norm(np.diff(ax, axis=0), axis=1)
alt_angs=2*np.pi-angs
#find discontinuities
d_angs = np.diff(angs, axis=0)
d_angs2 = alt_angs[1:]-angs[:-1]
# FIXME should check if dot product is <0 not norm d_ax
swps = np.where((dotprod<-1))[0]
#swps = np.where((np.abs(d_ax)>0.5))[0]
#swps = np.where(np.abs(d_angs2)<np.abs(d_angs))[0]
#reshape into intervals where we should unroll the rotations
isodd = swps.shape[0] % 2 == 1
if isodd:
swps=swps[:-1]
#swps = np.append(swps, rots.shape[0]-1)
intv = 1+swps.reshape((swps.shape[0]//2, 2))
for ii in range(intv.shape[0]):
new_ax = -rots[intv[ii,0]:intv[ii,1],:]/np.tile(angs[intv[ii,0]:intv[ii,1], None], (1,3))
new_angs = alt_angs[intv[ii,0]:intv[ii,1]]
new_rots[intv[ii,0]:intv[ii,1],:] = new_ax*np.tile(new_angs[:, None], (1,3))
return new_rots
def euler_reorder2(rots, order='XYZ', new_order='XYZ',use_deg=False):
if order==new_order:
return rots
if use_deg:
rots = np.deg2rad(rots)
quats = Quaternions.from_euler(rots, order=order.lower())
eul = quats.euler(order=new_order.lower())
if use_deg:
eul = np.rad2deg(eul)
return eul
def euler_reorder(rot, order='XYZ', new_order='XYZ',use_deg=False):
if order==new_order:
return rot
if use_deg:
rot = np.deg2rad(rot)
print("order:" + order)
print("new_order:" + new_order)
rotmat = t3d.euler.euler2mat(rot[0], rot[1], rot[2], 'r' + order.lower())
eul = t3d.euler.mat2euler(rotmat, 'r' + new_order.lower())
#quat = t3d.euler.euler2quat(rot[0], rot[1], rot[2], 'r' + order.lower())
#eul = t3d.euler.quat2euler(quat, 'r' + new_order.lower())
if use_deg:
eul = np.rad2deg(eul)
return eul
def offsets_inv(offset, rots, order='XYZ',use_deg=False):
if use_deg:
offset = np.deg2rad(offset)
rots = np.deg2rad(rots)
q0 = t3d.euler.euler2quat(rots[0], rots[1], rots[2], 'r' + order.lower())
q_off = t3d.euler.euler2quat(offset[0], offset[1], offset[2], 'r' + order.lower())
q2=t3d.euler.quat2euler(t3d.quaternions.qmult(q0,t3d.quaternions.qinverse(q_off)), 'r' + order.lower())
#q0=Quaternions.from_euler(rots, order=order.lower())
#q_off=Quaternions.from_euler(offset, order=order.lower())
#q2=((-q_off)*q0).euler(order=order.lower())
if use_deg:
q2 = np.rad2deg(q2)
return q2
def offsets(offset, rots, order='XYZ',use_deg=False):
if use_deg:
offset = np.deg2rad(offset)
rots = np.deg2rad(rots)
q0 = t3d.euler.euler2quat(rots[0], rots[1], rots[2], 'r' + order.lower())
q_off = t3d.euler.euler2quat(offset[0], offset[1], offset[2], 'r' + order.lower())
q2=t3d.euler.quat2euler(t3d.quaternions.qmult(q0,q_off), 'r' + order.lower())
#q0=Quaternions.from_euler(rots, order=order.lower())
#q_off=Quaternions.from_euler(offset, order=order.lower())
#q2=(q_off*q0).euler(order=order.lower())
if use_deg:
q2 = np.rad2deg(q2)
return q2
def euler2expmap2(rots, order='XYZ',use_deg=False):
if use_deg:
rots = np.deg2rad(rots)
#print("rot:" + str(rot))
quats=Quaternions.from_euler(rots, order=order.lower())
theta, vec = quats.angle_axis()
return unroll(vec*np.tile(theta[:,None],(1,3)))
def euler2expmap(rot, order='XYZ',use_deg=False):
if use_deg:
rot = np.deg2rad(rot)
#print("rot:" + str(rot))
vec, theta = t3d.euler.euler2axangle(rot[0], rot[1], rot[2], 'r' + order.lower())
return vec*theta
def expmap2euler(rot, order='XYZ',use_deg=False):
theta = np.linalg.norm(rot)
if theta > 1.0e-10:
vector = rot / theta
else:
vector = np.array([1.,0.,0.])
theta=0.0
eul = t3d.euler.axangle2euler(vector, theta, 'r' + order.lower())
if use_deg:
return np.rad2deg(eul)
else:
return eul
class Rotation():
def __init__(self,rot, param_type, **params):
self.rotmat = []
if param_type == 'euler':
self._from_euler(rot[0],rot[1],rot[2], params)
elif param_type == 'expmap':
self._from_expmap(rot[0], rot[1], rot[2], params)
def _from_euler(self, alpha, beta, gamma, params):
'''Expecting degress'''
if params['from_deg']==True:
alpha = deg2rad(alpha)
beta = deg2rad(beta)
gamma = deg2rad(gamma)
order = "s" + ((params['order']).lower())[::-1]
# Quaternions.from_euler()
self.rotmat = np.transpose(t3d.euler.euler2mat(gamma, beta , alpha, axes=order))
# ca = math.cos(alpha)
# cb = math.cos(beta)
# cg = math.cos(gamma)
# sa = math.sin(alpha)
# sb = math.sin(beta)
# sg = math.sin(gamma)
#
# Rx = np.asarray([[1, 0, 0],
# [0, ca, sa],
# [0, -sa, ca]
# ])
#
# Ry = np.asarray([[cb, 0, -sb],
# [0, 1, 0],
# [sb, 0, cb]])
#
# Rz = np.asarray([[cg, sg, 0],
# [-sg, cg, 0],
# [0, 0, 1]])
#
# self.rotmat = np.eye(3)
#
# order = params['order']
# for i in range(0,len(order)):
# if order[i]=='X':
# self.rotmat = np.matmul(Rx, self.rotmat)
# elif order[i]=='Y':
# self.rotmat = np.matmul(Ry, self.rotmat)
# elif order[i]=='Z':
# self.rotmat = np.matmul(Rz, self.rotmat)
# else:
# print('unknown rotation axis: ' + order[i])
#
# # self.rotmat = np.matmul(np.matmul(Rz, Ry), Rx)
# print ("------" + "TRUE")
# print (self.rotmat)
def _from_expmap(self, alpha, beta, gamma, params):
if (alpha == 0 and beta == 0 and gamma == 0):
self.rotmat = np.eye(3)
return
#TODO: Check exp map params
theta = np.linalg.norm([alpha, beta, gamma])
expmap = [alpha, beta, gamma] / theta
x = expmap[0]
y = expmap[1]
z = expmap[2]
s = math.sin(theta/2)
c = math.cos(theta/2)
self.rotmat = np.asarray([
[2*(x**2-1)*s**2+1, 2*x*y*s**2-2*z*c*s, 2*x*z*s**2+2*y*c*s],
[2*x*y*s**2+2*z*c*s, 2*(y**2-1)*s**2+1, 2*y*z*s**2-2*x*c*s],
[2*x*z*s**2-2*y*c*s, 2*y*z*s**2+2*x*c*s , 2*(z**2-1)*s**2+1]
])
def get_euler_axis(self):
R = self.rotmat
theta = math.acos((self.rotmat.trace() - 1) / 2)
axis = np.asarray([R[2,1] - R[1,2], R[0,2] - R[2,0], R[1,0] - R[0,1]])
axis = axis/(2*math.sin(theta))
return theta, axis
def to_expmap(self):
axis, theta = t3d.axangles.mat2axangle(self.rotmat, unit_thresh=1e-05)
# theta, axis = self.get_euler_axis()
rot_arr = theta * axis
if np.isnan(rot_arr).any():
rot_arr = [0, 0, 0]
return rot_arr
def to_euler(self, use_deg=False, order='xyz'):
order = "s" + order.lower()
eulers = t3d.euler.mat2euler(np.transpose(self.rotmat), axes=order)
return eulers[::-1]
# eulers = np.zeros((2, 3))
#
# if np.absolute(np.absolute(self.rotmat[2, 0]) - 1) < 1e-12:
# #GIMBAL LOCK!
# print('Gimbal')
# if np.absolute(self.rotmat[2, 0]) - 1 < 1e-12:
# eulers[:,0] = math.atan2(-self.rotmat[0,1], -self.rotmat[0,2])
# eulers[:,1] = -math.pi/2
# else:
# eulers[:,0] = math.atan2(self.rotmat[0,1], -elf.rotmat[0,2])
# eulers[:,1] = math.pi/2
#
# return eulers
#
# theta = - math.asin(self.rotmat[2,0])
# theta2 = math.pi - theta
#
# # psi1, psi2
# eulers[0,0] = math.atan2(self.rotmat[2,1]/math.cos(theta), self.rotmat[2,2]/math.cos(theta))
# eulers[1,0] = math.atan2(self.rotmat[2,1]/math.cos(theta2), self.rotmat[2,2]/math.cos(theta2))
#
# # theta1, theta2
# eulers[0,1] = theta
# eulers[1,1] = theta2
#
# # phi1, phi2
# eulers[0,2] = math.atan2(self.rotmat[1,0]/math.cos(theta), self.rotmat[0,0]/math.cos(theta))
# eulers[1,2] = math.atan2(self.rotmat[1,0]/math.cos(theta2), self.rotmat[0,0]/math.cos(theta2))
#
if use_deg:
eulers = rad2deg(eulers)
return eulers
def to_quat(self):
#TODO
pass
def __str__(self):
return "Rotation Matrix: \n " + self.rotmat.__str__()