Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from fastai.vision.all import * | |
| def get_images_to_train_on(): | |
| return [''] | |
| def get_label_by_filename(filename): | |
| return 'Other' | |
| learn = load_learner('model.pkl') | |
| categories = ('apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', | |
| 'beef_tartare', 'beet_salad', 'beignets', 'bibimbap', | |
| 'bread_pudding', 'breakfast_burrito', 'bruschetta', 'caesar_salad', | |
| 'cannoli', 'caprese_salad', 'carrot_cake', 'ceviche', 'cheesecake', | |
| 'cheese_plate', 'chicken_curry', 'chicken_quesadilla', | |
| 'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', | |
| 'clam_chowder', 'club_sandwich', 'crab_cakes', 'creme_brulee', | |
| 'croque_madame', 'cup_cakes', 'deviled_eggs', 'donuts', | |
| 'dumplings', 'edamame', 'eggs_benedict', 'escargots', 'falafel', | |
| 'filet_mignon', 'fish_and_chips', 'foie_gras', 'french_fries', | |
| 'french_onion_soup', 'french_toast', 'fried_calamari', | |
| 'fried_rice', 'frozen_yogurt', 'garlic_bread', 'gnocchi', | |
| 'greek_salad', 'grilled_cheese_sandwich', 'grilled_salmon', | |
| 'guacamole', 'gyoza', 'hamburger', 'hot_and_sour_soup', 'hot_dog', | |
| 'huevos_rancheros', 'hummus', 'ice_cream', 'lasagna', | |
| 'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese', | |
| 'macarons', 'miso_soup', 'mussels', 'nachos', 'omelette', | |
| 'onion_rings', 'oysters', 'pad_thai', 'paella', 'pancakes', | |
| 'panna_cotta', 'peking_duck', 'pho', 'pizza', 'pork_chop', | |
| 'poutine', 'prime_rib', 'pulled_pork_sandwich', 'ramen', 'ravioli', | |
| 'red_velvet_cake', 'risotto', 'samosa', 'sashimi', 'scallops', | |
| 'seaweed_salad', 'shrimp_and_grits', 'spaghetti_bolognese', | |
| 'spaghetti_carbonara', 'spring_rolls', 'steak', | |
| 'strawberry_shortcake', 'sushi', 'tacos', 'takoyaki', 'tiramisu', | |
| 'tuna_tartare', 'waffles') | |
| def classify_image(img): | |
| pred, idx, probs = learn.predict(img) | |
| return dict(zip(categories, map(float, probs))) | |
| image = gr.inputs.Image(shape = (192,192)) | |
| label = gr.outputs.Label(num_top_classes=3) | |
| examples = ['tiramisu.jpeg', 'pizza.jpeg'] | |
| intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) | |
| intf.launch(inline=False) | |