mehradans92 commited on
Commit
df44d29
·
1 Parent(s): fd60d1d

developed api

Browse files
Files changed (2) hide show
  1. app.py +224 -6
  2. requirements.txt +5 -1
app.py CHANGED
@@ -2,14 +2,232 @@ import easyocr as ocr #OCR
2
  import streamlit as st #Web App
3
  from PIL import Image #Image Processing
4
  import numpy as np #Image Processing
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  #title
7
- st.title("Easy OCR - Extract Text from Images")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- #subtitle
10
- st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces")
 
11
 
12
- st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")
13
 
14
- #image uploader
15
- image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg'])
 
2
  import streamlit as st #Web App
3
  from PIL import Image #Image Processing
4
  import numpy as np #Image Processing
5
+ import urllib
6
+ from lxml import html
7
+ import requests
8
+ import re
9
+ import os
10
+ from stqdm import stqdm
11
+ import pandoc
12
+ import time
13
+ import shutil
14
+
15
+ import pickle
16
+
17
 
18
  #title
19
+ st.title("Encode knowledge from papers with cited references")
20
+ st.markdown("##### Current version searches on ArXiv only.")
21
+
22
+ api_key_url = 'https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key'
23
+
24
+ api_key = st.text_input('OpenAI API Key',
25
+ placeholder='sk-...',
26
+ help=f"['What is that?']({api_key_url})",
27
+ type="password")
28
+
29
+ # st.write('The current movie title is', title)
30
+ os.environ["OPENAI_API_KEY"] = f"{api_key}" #
31
+ import paperqa
32
+
33
+
34
+ def call_arXiv_API(search_query, search_by='all', sort_by='relevance', max_results='10', folder_name='arxiv-dl'):
35
+ '''
36
+ Scraps the arXiv's html to get data from each entry in a search. Entries has the following formatting:
37
+ <entry>\n
38
+ <id>http://arxiv.org/abs/2008.04584v2</id>\n
39
+ <updated>2021-05-11T12:00:24Z</updated>\n
40
+ <published>2020-08-11T08:47:06Z</published>\n
41
+ <title>Bayesian Selective Inference: Non-informative Priors</title>\n
42
+ <summary> We discuss Bayesian inference for parameters selected using the data. First,\nwe provide a critical analysis of the existing positions in the literature\nregarding the correct Bayesian approach under selection. Second, we propose two\ntypes of non-informative priors for selection models. These priors may be\nemployed to produce a posterior distribution in the absence of prior\ninformation as well as to provide well-calibrated frequentist inference for the\nselected parameter. We test the proposed priors empirically in several\nscenarios.\n</summary>\n
43
+ <author>\n <name>Daniel G. Rasines</name>\n </author>\n <author>\n <name>G. Alastair Young</name>\n </author>\n
44
+ <arxiv:comment xmlns:arxiv="http://arxiv.org/schemas/atom">24 pages, 7 figures</arxiv:comment>\n
45
+ <link href="http://arxiv.org/abs/2008.04584v2" rel="alternate" type="text/html"/>\n
46
+ <link title="pdf" href="http://arxiv.org/pdf/2008.04584v2" rel="related" type="application/pdf"/>\n
47
+ <arxiv:primary_category xmlns:arxiv="http://arxiv.org/schemas/atom" term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
48
+ <category term="math.ST" scheme="http://arxiv.org/schemas/atom"/>\n
49
+ <category term="stat.TH" scheme="http://arxiv.org/schemas/atom"/>\n
50
+ </entry>\n
51
+ '''
52
+
53
+ # Remove space in seach query
54
+ search_query=search_query.strip().replace(" ", "+")
55
+ # Call arXiv API
56
+ arXiv_url=f'http://export.arxiv.org/api/query?search_query={search_by}:{search_query}&sortBy={sort_by}&start=0&max_results={max_results}'
57
+ with urllib.request.urlopen(arXiv_url) as url:
58
+ s = url.read()
59
+
60
+ # Parse the xml data
61
+ root = html.fromstring(s)
62
+ # Fetch relevant pdf information
63
+ pdf_entries = root.xpath("entry")
64
+
65
+ pdf_titles = []
66
+ pdf_authors = []
67
+ pdf_urls = []
68
+ pdf_categories = []
69
+ folder_names = []
70
+ pdf_citation = []
71
+ pdf_years = []
72
+
73
+ for i, pdf in enumerate(pdf_entries):
74
+ # print(pdf.xpath('updated/text()')[0][:4])
75
+ # xpath return a list with every ocurrence of the html path. Since we're getting each entry individually, we'll take the first element to avoid an unecessary list
76
+ pdf_titles.append(re.sub('[^a-zA-Z0-9]', ' ', pdf.xpath("title/text()")[0]))
77
+ pdf_authors.append(pdf.xpath("author/name/text()"))
78
+ pdf_urls.append(pdf.xpath("link[@title='pdf']/@href")[0])
79
+ pdf_categories.append(pdf.xpath("category/@term"))
80
+ folder_names.append(folder_name)
81
+ pdf_years.append(pdf.xpath('updated/text()')[0][:4])
82
+ pdf_citation.append(f"{', '.join(pdf_authors[i])}, {pdf_titles[i]}. arXiv [{pdf_categories[i][0]}] ({pdf_years[i]}), (available at {pdf_urls[i]}).")
83
+
84
+
85
+
86
+ pdf_info=list(zip(pdf_titles, pdf_urls, pdf_authors, pdf_categories, folder_names, pdf_citation))
87
+
88
+ # Check number of available files
89
+ print('Requesting {max_results} files'.format(max_results=max_results))
90
+ if len(pdf_urls)<int(max_results):
91
+ matching_pdf_num=len(pdf_urls)
92
+ print('Only {matching_pdf_num} files available'.format(matching_pdf_num=matching_pdf_num))
93
+ return pdf_info, pdf_citation
94
+
95
+
96
+ def download_pdf(pdf_info):
97
+
98
+ # if len(os.listdir(f'./{folder_name}') ) != 0:
99
+ # check folder is empty to avoid using papers from old runs:
100
+ # os.remove(f'./{folder_name}/*')
101
+
102
+ for i,p in enumerate(stqdm(pdf_info, desc='Searching and downloading papers')):
103
+
104
+ pdf_title=p[0]
105
+ pdf_url=p[1]
106
+ pdf_author=p[2]
107
+ pdf_category=p[3]
108
+ folder_name=p[4]
109
+ pdf_citation=p[5]
110
+ r = requests.get(pdf_url, allow_redirects=True)
111
+ if i == 0:
112
+ if not os.path.exists(f'{folder_name}'):
113
+ os.makedirs(f"{folder_name}")
114
+ else:
115
+ shutil.rmtree(f'{folder_name}')
116
+ os.makedirs(f"{folder_name}")
117
+ with open(f'{folder_name}/{pdf_title}.pdf', 'wb') as currP:
118
+ currP.write(r.content)
119
+ if i == 0:
120
+ st.markdown("###### Papers found:")
121
+ st.markdown(f'{i+1}. {pdf_citation}')
122
+
123
+
124
+
125
+
126
+ # #subtitle
127
+ # st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces")
128
+
129
+ # st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")
130
+
131
+ # #image uploader
132
+ # image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg'])
133
+
134
+ max_results_current = 1
135
+ max_results = max_results_current
136
+ pdf_info = ''
137
+ pdf_citation = ''
138
+ def search_click_callback(search_query, max_results):
139
+ global pdf_info, pdf_citation
140
+ pdf_info, pdf_citation = call_arXiv_API(f'{search_query}', max_results=max_results)
141
+ download_pdf(pdf_info)
142
+
143
+
144
+
145
+
146
+ with st.form(key='columns_in_form', clear_on_submit = False):
147
+ c1, c2 = st.columns([8,1])
148
+ with c1:
149
+ search_query = st.text_input("Input search query here:", placeholder='Keywords for most relevant search...', value=''
150
+ )#search_query, max_results_current))
151
+
152
+ with c2:
153
+ max_results = st.text_input("Max papers", value=max_results_current)
154
+ max_results_current = max_results_current
155
+ searchButton = st.form_submit_button(label = 'Search')
156
+ # search_click(search_query, max_results_default)
157
+
158
+ if searchButton:
159
+ text = st.write(search_click_callback(search_query, max_results))
160
+
161
+ def tokenize_callback():
162
+ global docs
163
+ docs = paperqa.Docs()
164
+ pdf_paths = [f"{p[4]}/{p[0]}.pdf" for p in pdf_info]
165
+ pdf_citations = [p[5] for p in pdf_info]
166
+
167
+ for d, c in stqdm(zip(pdf_paths, pdf_citations)):
168
+ docs.add(d, c)
169
+ # return docs
170
+
171
+ tokenization_form = st.form(key='tokenization-form')
172
+ tokenization_form.markdown(f"Happy with your paper search results? ")
173
+ toknizeButton = tokenization_form.form_submit_button(label = "Yes! Let's tokenize.", on_click=tokenize_callback())
174
+ tokenization_form.markdown("If not, change keywords and search again. [This step costs!](https://openai.com/api/pricing/)")
175
+
176
+ # submitButton = form.form_submit_button('Submit')
177
+ # with st.form(key='tokenization_form', clear_on_submit = False):
178
+ # st.markdown(f"Happy with your paper search results? If not, change keywords and search again. [This step costs!](https://openai.com/api/pricing/)")
179
+ # # st.text_input("Input search query here:", placeholder='Keywords for most relevant search...'
180
+ # # )#search_query, max_results_current))
181
+ # toknizeButton = st.form_submit_button(label = "Yes! Let's tokenize.")
182
+
183
+ # if toknizeButton:
184
+ # tokenize_callback()
185
+
186
+ def answer_callback(question_query):
187
+ answer = docs.query(question_query)
188
+ print(answer.formatted_answer)
189
+ return answer.formatted_answer
190
+
191
+ form = st.form(key='question_form')
192
+ question_query = form.text_input("What do you wanna know from these papers?", placeholder='Input questions here...',
193
+ value='')
194
+ submitButton = form.form_submit_button('Submit')
195
+
196
+ if submitButton:
197
+ text = st.text_area("Answer:", answer_callback(question_query), height=300)
198
+
199
+ # with st.form(key='question_form', clear_on_submit = False):
200
+ # question_query = st.text_input("What do you wanna know from these papers?", placeholder='Input questions here')
201
+ # # st.text_input("Input search query here:", placeholder='Keywords for most relevant search...'
202
+ # # )#search_query, max_results_current))
203
+ # submitButton = form.form_submit_button(label = "Submit", on_click=answer_callback(question_query))
204
+
205
+
206
+ # Simulation-based inference bayesian model selection
207
+
208
+
209
+
210
+
211
+
212
+ # test = "<ul> \
213
+ # <li>List item here</li> \
214
+ # <li>List item here</li> \
215
+ # <li>List item here</li> \
216
+ # <li>List item here</li> \
217
+ # </ul>"
218
+ # test = "'''It was the best of times, it was the worst of times, it was \
219
+ # the age of wisdom, it was the age of foolishness, it was \
220
+ # the epoch of belief, it was the epoch of incredulity, it \
221
+ # was the season of Light, it was the season of Darkness, it\
222
+ # was the spring of hope, it was the winter of despair, (...)'''"
223
+
224
+ # citation_text = st.text_area('Papers found:',test, height=300) # f'{pdf_citation}'
225
+
226
 
227
+ # for i, cite in enumerate(pdf_citation):
228
+ # st.markdown(f'{i+1}. {cite}')
229
+ # time.sleep(1)
230
 
 
231
 
232
+ # def make_clickable('link',text):
233
+ # return f'<a target="_blank" href="{link}">{text}'
requirements.txt CHANGED
@@ -2,4 +2,8 @@ streamlit
2
  opencv-python-headless
3
  numpy
4
  easyocr
5
- Pillow
 
 
 
 
 
2
  opencv-python-headless
3
  numpy
4
  easyocr
5
+ Pillow
6
+ urllib
7
+ lxml
8
+ stqdm
9
+ paper-qa