|
import torch |
|
import json |
|
import os |
|
|
|
version_config_list = [ |
|
"v1/32000.json", |
|
"v1/40000.json", |
|
"v1/48000.json", |
|
"v2/48000.json", |
|
"v2/32000.json", |
|
] |
|
|
|
|
|
def singleton_variable(func): |
|
def wrapper(*args, **kwargs): |
|
if not wrapper.instance: |
|
wrapper.instance = func(*args, **kwargs) |
|
return wrapper.instance |
|
|
|
wrapper.instance = None |
|
return wrapper |
|
|
|
|
|
@singleton_variable |
|
class Config: |
|
def __init__(self): |
|
self.device = "cuda:0" |
|
self.is_half = True |
|
self.use_jit = False |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.json_config = self.load_config_json() |
|
self.gpu_mem = None |
|
self.instead = "" |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
@staticmethod |
|
def load_config_json() -> dict: |
|
d = {} |
|
for config_file in version_config_list: |
|
with open(f"rvc/configs/{config_file}", "r") as f: |
|
d[config_file] = json.load(f) |
|
return d |
|
|
|
@staticmethod |
|
def has_mps() -> bool: |
|
if not torch.backends.mps.is_available(): |
|
return False |
|
try: |
|
torch.zeros(1).to(torch.device("mps")) |
|
return True |
|
except Exception: |
|
return False |
|
|
|
@staticmethod |
|
def has_xpu() -> bool: |
|
if hasattr(torch, "xpu") and torch.xpu.is_available(): |
|
return True |
|
else: |
|
return False |
|
|
|
def use_fp32_config(self): |
|
print( |
|
f"Using FP32 config instead of FP16 due to GPU compatibility ({self.gpu_name})" |
|
) |
|
for config_file in version_config_list: |
|
self.json_config[config_file]["train"]["fp16_run"] = False |
|
with open(f"rvc/configs/{config_file}", "r") as f: |
|
strr = f.read().replace("true", "false") |
|
with open(f"rvc/configs/{config_file}", "w") as f: |
|
f.write(strr) |
|
with open("rvc/train/preprocess/preprocess.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("rvc/train/preprocess/preprocess.py", "w") as f: |
|
f.write(strr) |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
if self.has_xpu(): |
|
self.device = self.instead = "xpu:0" |
|
self.is_half = True |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "P10" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
self.is_half = False |
|
self.use_fp32_config() |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
if self.gpu_mem <= 4: |
|
with open("rvc/train/preprocess/preprocess.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("rvc/train/preprocess/preprocess.py", "w") as f: |
|
f.write(strr) |
|
elif self.has_mps(): |
|
print("No supported Nvidia GPU found") |
|
self.device = self.instead = "mps" |
|
self.is_half = False |
|
self.use_fp32_config() |
|
else: |
|
print("No supported Nvidia GPU found") |
|
self.device = self.instead = "cpu" |
|
self.is_half = False |
|
self.use_fp32_config() |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = os.cpu_count() |
|
|
|
if self.is_half: |
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem is not None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
|
|
def max_vram_gpu(gpu): |
|
if torch.cuda.is_available(): |
|
gpu_properties = torch.cuda.get_device_properties(gpu) |
|
total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024) |
|
return total_memory_gb |
|
else: |
|
return "0" |
|
|
|
|
|
def get_gpu_info(): |
|
ngpu = torch.cuda.device_count() |
|
gpu_infos = [] |
|
if torch.cuda.is_available() or ngpu != 0: |
|
for i in range(ngpu): |
|
gpu_name = torch.cuda.get_device_name(i) |
|
mem = int( |
|
torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 |
|
+ 0.4 |
|
) |
|
gpu_infos.append("%s: %s %s GB" % (i, gpu_name, mem)) |
|
if len(gpu_infos) > 0: |
|
gpu_info = "\n".join(gpu_infos) |
|
else: |
|
gpu_info = "Unfortunately, there is no compatible GPU available to support your training." |
|
return gpu_info |
|
|