Spaces:
Runtime error
Runtime error
Mehdi Cherti
commited on
Commit
·
06c5f0c
1
Parent(s):
8d2bdec
update available models
Browse files
run.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
-
from clize import run
|
| 3 |
from glob import glob
|
| 4 |
from subprocess import call
|
| 5 |
-
|
| 6 |
def base():
|
| 7 |
return {
|
| 8 |
"slurm":{
|
|
@@ -34,7 +33,7 @@ def base():
|
|
| 34 |
"save_ckpt_every": 1,
|
| 35 |
"masked_mean": "",
|
| 36 |
"resume": "",
|
| 37 |
-
}
|
| 38 |
}
|
| 39 |
def ddgan_cc12m_v2():
|
| 40 |
cfg = base()
|
|
@@ -69,7 +68,6 @@ def ddgan_cc12m_v9():
|
|
| 69 |
cfg['model']['batch_size'] = 1
|
| 70 |
return cfg
|
| 71 |
|
| 72 |
-
|
| 73 |
def ddgan_cc12m_v11():
|
| 74 |
cfg = base()
|
| 75 |
cfg['model']['text_encoder'] = "google/t5-v1_1-large"
|
|
@@ -77,22 +75,78 @@ def ddgan_cc12m_v11():
|
|
| 77 |
cfg['model']['cross_attention'] = ""
|
| 78 |
return cfg
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
]
|
|
|
|
| 89 |
def get_model(model_name):
|
| 90 |
for model in models:
|
| 91 |
if model.__name__ == model_name:
|
| 92 |
return model()
|
| 93 |
|
| 94 |
|
| 95 |
-
def test(model_name, *, cond_text="", batch_size:int=None, epoch:int=None, guidance_scale:float=0, fid=False, real_img_dir=""):
|
| 96 |
|
| 97 |
cfg = get_model(model_name)
|
| 98 |
model = cfg['model']
|
|
@@ -104,6 +158,7 @@ def test(model_name, *, cond_text="", batch_size:int=None, epoch:int=None, guida
|
|
| 104 |
args = {}
|
| 105 |
args['exp'] = model_name
|
| 106 |
args['image_size'] = model['image_size']
|
|
|
|
| 107 |
args['num_channels'] = model['num_channels']
|
| 108 |
args['dataset'] = model['dataset']
|
| 109 |
args['num_channels_dae'] = model['num_channels_dae']
|
|
@@ -116,12 +171,35 @@ def test(model_name, *, cond_text="", batch_size:int=None, epoch:int=None, guida
|
|
| 116 |
args['text_encoder'] = model.get("text_encoder")
|
| 117 |
args['cross_attention'] = model.get("cross_attention")
|
| 118 |
args['guidance_scale'] = guidance_scale
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
if fid:
|
| 121 |
args['compute_fid'] = ''
|
| 122 |
args['real_img_dir'] = real_img_dir
|
| 123 |
-
|
|
|
|
| 124 |
print(cmd)
|
| 125 |
call(cmd, shell=True)
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
from glob import glob
|
| 3 |
from subprocess import call
|
| 4 |
+
import json
|
| 5 |
def base():
|
| 6 |
return {
|
| 7 |
"slurm":{
|
|
|
|
| 33 |
"save_ckpt_every": 1,
|
| 34 |
"masked_mean": "",
|
| 35 |
"resume": "",
|
| 36 |
+
},
|
| 37 |
}
|
| 38 |
def ddgan_cc12m_v2():
|
| 39 |
cfg = base()
|
|
|
|
| 68 |
cfg['model']['batch_size'] = 1
|
| 69 |
return cfg
|
| 70 |
|
|
|
|
| 71 |
def ddgan_cc12m_v11():
|
| 72 |
cfg = base()
|
| 73 |
cfg['model']['text_encoder'] = "google/t5-v1_1-large"
|
|
|
|
| 75 |
cfg['model']['cross_attention'] = ""
|
| 76 |
return cfg
|
| 77 |
|
| 78 |
+
def ddgan_cc12m_v12():
|
| 79 |
+
cfg = ddgan_cc12m_v11()
|
| 80 |
+
cfg['model']['text_encoder'] = "google/t5-v1_1-xl"
|
| 81 |
+
cfg['model']['preprocessing'] = 'random_resized_crop_v1'
|
| 82 |
+
return cfg
|
| 83 |
+
|
| 84 |
+
def ddgan_cc12m_v13():
|
| 85 |
+
cfg = ddgan_cc12m_v12()
|
| 86 |
+
cfg['model']['discr_type'] = "large_cond_attn"
|
| 87 |
+
return cfg
|
| 88 |
+
|
| 89 |
+
def ddgan_cc12m_v14():
|
| 90 |
+
cfg = ddgan_cc12m_v12()
|
| 91 |
+
cfg['model']['num_channels_dae'] = 192
|
| 92 |
+
return cfg
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def ddgan_cifar10_cond17():
|
| 96 |
+
cfg = base()
|
| 97 |
+
cfg['model']['image_size'] = 32
|
| 98 |
+
cfg['model']['classifier_free_guidance_proba'] = 0.2
|
| 99 |
+
cfg['model']['ch_mult'] = "1 2 2 2"
|
| 100 |
+
cfg['model']['cross_attention'] = ""
|
| 101 |
+
cfg['model']['dataset'] = "cifar10"
|
| 102 |
+
cfg['model']['n_mlp'] = 4
|
| 103 |
+
return cfg
|
| 104 |
|
| 105 |
+
def ddgan_cifar10_cond18():
|
| 106 |
+
cfg = ddgan_cifar10_cond17()
|
| 107 |
+
cfg['model']['text_encoder'] = "google/t5-v1_1-xl"
|
| 108 |
+
return cfg
|
| 109 |
+
|
| 110 |
+
def ddgan_laion_aesthetic_v1():
|
| 111 |
+
cfg = ddgan_cc12m_v11()
|
| 112 |
+
cfg['model']['dataset_root'] = '"/p/scratch/ccstdl/cherti1/LAION-aesthetic/output/{00000..05038}.tar"'
|
| 113 |
+
return cfg
|
| 114 |
+
|
| 115 |
+
def ddgan_laion_aesthetic_v2():
|
| 116 |
+
cfg = ddgan_laion_aesthetic_v1()
|
| 117 |
+
cfg['model']['discr_type'] = "large_cond_attn"
|
| 118 |
+
return cfg
|
| 119 |
+
|
| 120 |
+
def ddgan_laion_aesthetic_v3():
|
| 121 |
+
cfg = ddgan_laion_aesthetic_v1()
|
| 122 |
+
cfg['model']['text_encoder'] = "google/t5-v1_1-xl"
|
| 123 |
+
return cfg
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
models = [
|
| 127 |
+
ddgan_cifar10_cond17, # cifar10, cross attn for discr
|
| 128 |
+
ddgan_cifar10_cond18, # cifar10, xl encoder
|
| 129 |
+
ddgan_cc12m_v2, # baseline (no large text encoder, no classifier guidance)
|
| 130 |
+
ddgan_cc12m_v6, # like v2 but using large T5 text encoder
|
| 131 |
+
ddgan_cc12m_v7, # like v2 but with classifier guidance
|
| 132 |
+
ddgan_cc12m_v8, # like v6 but classifier guidance
|
| 133 |
+
ddgan_cc12m_v9, # ~1B model but 64x64 resolution
|
| 134 |
+
ddgan_cc12m_v11, # large text encoder + cross attention + classifier free guidance
|
| 135 |
+
ddgan_cc12m_v12, # T5-XL + cross attention + classifier free guidance + random_resized_crop_v1
|
| 136 |
+
ddgan_cc12m_v13, # T5-XL + cross attention + classifier free guidance + random_resized_crop_v1 + cond attn
|
| 137 |
+
ddgan_cc12m_v14, # T5-XL + cross attention + classifier free guidance + random_resized_crop_v1 + 300M model
|
| 138 |
+
ddgan_laion_aesthetic_v1, # like ddgan_cc12m_v11 but fine-tuned on laion aesthetic
|
| 139 |
+
ddgan_laion_aesthetic_v2, # like ddgan_laion_aesthetic_v1 but trained from scratch with the new cross attn discr
|
| 140 |
+
ddgan_laion_aesthetic_v3, # like ddgan_laion_aesthetic_v1 but trained from scratch with T5-XL
|
| 141 |
]
|
| 142 |
+
|
| 143 |
def get_model(model_name):
|
| 144 |
for model in models:
|
| 145 |
if model.__name__ == model_name:
|
| 146 |
return model()
|
| 147 |
|
| 148 |
|
| 149 |
+
def test(model_name, *, cond_text="", batch_size:int=None, epoch:int=None, guidance_scale:float=0, fid=False, real_img_dir="", q=0.0, seed=0, nb_images_for_fid=0):
|
| 150 |
|
| 151 |
cfg = get_model(model_name)
|
| 152 |
model = cfg['model']
|
|
|
|
| 158 |
args = {}
|
| 159 |
args['exp'] = model_name
|
| 160 |
args['image_size'] = model['image_size']
|
| 161 |
+
args['seed'] = seed
|
| 162 |
args['num_channels'] = model['num_channels']
|
| 163 |
args['dataset'] = model['dataset']
|
| 164 |
args['num_channels_dae'] = model['num_channels_dae']
|
|
|
|
| 171 |
args['text_encoder'] = model.get("text_encoder")
|
| 172 |
args['cross_attention'] = model.get("cross_attention")
|
| 173 |
args['guidance_scale'] = guidance_scale
|
| 174 |
+
args['masked_mean'] = model.get("masked_mean")
|
| 175 |
+
args['dynamic_thresholding_quantile'] = q
|
| 176 |
+
args['n_mlp'] = model.get("n_mlp")
|
| 177 |
|
| 178 |
if fid:
|
| 179 |
args['compute_fid'] = ''
|
| 180 |
args['real_img_dir'] = real_img_dir
|
| 181 |
+
args['nb_images_for_fid'] = nb_images_for_fid
|
| 182 |
+
cmd = "python -u test_ddgan.py " + " ".join(f"--{k} {v}" for k, v in args.items() if v is not None)
|
| 183 |
print(cmd)
|
| 184 |
call(cmd, shell=True)
|
| 185 |
|
| 186 |
+
def eval_results(model_name):
|
| 187 |
+
import pandas as pd
|
| 188 |
+
rows = []
|
| 189 |
+
cfg = get_model(model_name)
|
| 190 |
+
model = cfg['model']
|
| 191 |
+
paths = glob('./saved_info/dd_gan/{}/{}/fid*.json'.format(model["dataset"], model_name))
|
| 192 |
+
for path in paths:
|
| 193 |
+
with open(path, "r") as fd:
|
| 194 |
+
data = json.load(fd)
|
| 195 |
+
row = {}
|
| 196 |
+
row['fid'] = data['fid']
|
| 197 |
+
row['epoch'] = data['epoch_id']
|
| 198 |
+
rows.append(row)
|
| 199 |
+
out = './saved_info/dd_gan/{}/{}/fid.csv'.format(model["dataset"], model_name)
|
| 200 |
+
df = pd.DataFrame(rows)
|
| 201 |
+
df.to_csv(out, index=False)
|
| 202 |
+
|
| 203 |
+
if __name__ == "__main__":
|
| 204 |
+
from clize import run
|
| 205 |
+
run([test, eval_results])
|