mehdidc commited on
Commit
957ae0d
·
1 Parent(s): 4a1f2c0

update text

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -23,18 +23,22 @@ def gen(md, model_name, seed, nb_iter, nb_samples, width, height, nb_active, onl
23
  w=int(width), h=int(height), c=1,
24
  batch_size=bs,
25
  )
 
 
26
  if only_last:
27
  s = int(math.sqrt((nb_samples)))
28
  grid = grid_of_images_default(samples[-1].numpy(), shape=(s, s))
29
  else:
30
  grid = grid_of_images_default(samples.reshape((samples.shape[0]*samples.shape[1], int(height), int(width), 1)).numpy(), shape=(samples.shape[0], samples.shape[1]))
31
- if not black_bg:
32
- grid = 1 - grid
33
  grid = (grid*255).astype("uint8")
34
  return Image.fromarray(grid)
35
 
36
  text = """
37
- Interface with ConvAE model (from [here](https://arxiv.org/pdf/1606.04345.pdf)) and DeepConvAE model (from [here](https://tel.archives-ouvertes.fr/tel-01838272/file/75406_CHERTI_2018_diffusion.pdf), Section 10.1 with `L=3`), Dense K-Sparse model (from [here](https://openreview.net/forum?id=r1QXQkSYg))
 
 
 
 
38
 
39
  These models were trained on MNIST only (digits), but were found to generate new kinds of symbols, see the references for more details.
40
 
 
23
  w=int(width), h=int(height), c=1,
24
  batch_size=bs,
25
  )
26
+ if not black_bg:
27
+ samples = 1 - samples
28
  if only_last:
29
  s = int(math.sqrt((nb_samples)))
30
  grid = grid_of_images_default(samples[-1].numpy(), shape=(s, s))
31
  else:
32
  grid = grid_of_images_default(samples.reshape((samples.shape[0]*samples.shape[1], int(height), int(width), 1)).numpy(), shape=(samples.shape[0], samples.shape[1]))
 
 
33
  grid = (grid*255).astype("uint8")
34
  return Image.fromarray(grid)
35
 
36
  text = """
37
+ This interface supports generation of samples from:
38
+
39
+ - ConvAE model (from [`Digits that are not: Generating new types through deep neural nets`](https://arxiv.org/pdf/1606.04345.pdf))
40
+ - DeepConvAE model (from [here](https://tel.archives-ouvertes.fr/tel-01838272/file/75406_CHERTI_2018_diffusion.pdf), Section 10.1 with `L=3`)
41
+ - Dense K-Sparse model (from [`Out-of-class novelty generation`](https://openreview.net/forum?id=r1QXQkSYg))
42
 
43
  These models were trained on MNIST only (digits), but were found to generate new kinds of symbols, see the references for more details.
44