Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import tqdm | |
import torch | |
import torch.nn.functional as F | |
import fairseq | |
import soundfile as sf | |
import numpy as np | |
import logging | |
logging.getLogger("fairseq").setLevel(logging.WARNING) | |
device = sys.argv[1] | |
n_parts = int(sys.argv[2]) | |
i_part = int(sys.argv[3]) | |
if len(sys.argv) == 7: | |
exp_dir, version, is_half = sys.argv[4], sys.argv[5], bool(sys.argv[6]) | |
else: | |
i_gpu, exp_dir = sys.argv[4], sys.argv[5] | |
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu) | |
version, is_half = sys.argv[6], bool(sys.argv[7]) | |
def forward_dml(ctx, x, scale): | |
ctx.scale = scale | |
res = x.clone().detach() | |
return res | |
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml | |
model_path = "hubert_base.pt" | |
wav_path = f"{exp_dir}/1_16k_wavs" | |
out_path = f"{exp_dir}/3_feature256" if version == "v1" else f"{exp_dir}/3_feature768" | |
os.makedirs(out_path, exist_ok=True) | |
def read_wave(wav_path, normalize=False): | |
wav, sr = sf.read(wav_path) | |
assert sr == 16000 | |
feats = torch.from_numpy(wav) | |
feats = feats.half() if is_half else feats.float() | |
feats = feats.mean(-1) if feats.dim() == 2 else feats | |
feats = feats.view(1, -1) | |
if normalize: | |
with torch.no_grad(): | |
feats = F.layer_norm(feats, feats.shape) | |
return feats | |
print("Starting feature extraction...") | |
models, saved_cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task( | |
[model_path], | |
suffix="", | |
) | |
model = models[0] | |
model = model.to(device) | |
if device not in ["mps", "cpu"]: | |
model = model.half() | |
model.eval() | |
todo = sorted(os.listdir(wav_path))[i_part::n_parts] | |
n = max(1, len(todo) // 10) | |
if len(todo) == 0: | |
print( | |
"An error occurred in the feature extraction, make sure you have provided the audios correctly." | |
) | |
else: | |
print(f"{len(todo)}") | |
with tqdm.tqdm(total=len(todo)) as pbar: | |
for idx, file in enumerate(todo): | |
try: | |
if file.endswith(".wav"): | |
wav_file_path = os.path.join(wav_path, file) | |
out_file_path = os.path.join(out_path, file.replace("wav", "npy")) | |
if os.path.exists(out_file_path): | |
continue | |
feats = read_wave(wav_file_path, normalize=saved_cfg.task.normalize) | |
padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
inputs = { | |
"source": feats.to(device), | |
"padding_mask": padding_mask.to(device), | |
"output_layer": 9 if version == "v1" else 12, | |
} | |
with torch.no_grad(): | |
logits = model.extract_features(**inputs) | |
feats = ( | |
model.final_proj(logits[0]) | |
if version == "v1" | |
else logits[0] | |
) | |
feats = feats.squeeze(0).float().cpu().numpy() | |
if np.isnan(feats).sum() == 0: | |
np.save(out_file_path, feats, allow_pickle=False) | |
else: | |
print(f"{file} - contains nan") | |
pbar.set_description(f"Processing {file} {feats.shape}") | |
except Exception as error: | |
print(error) | |
pbar.update(1) | |
print("Feature extraction completed successfully!") | |