Spaces:
Running
Running
import os | |
import sys | |
import json | |
import argparse | |
import subprocess | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from rvc.configs.config import Config | |
from rvc.lib.tools.prerequisites_download import prequisites_download_pipeline | |
from rvc.train.extract.preparing_files import generate_config, generate_filelist | |
from rvc.lib.tools.pretrained_selector import pretrained_selector | |
from rvc.train.process.model_blender import model_blender | |
from rvc.train.process.model_information import model_information | |
from rvc.train.process.extract_small_model import extract_small_model | |
from rvc.infer.infer import infer_pipeline | |
from rvc.lib.tools.analyzer import analyze_audio | |
from rvc.lib.tools.launch_tensorboard import launch_tensorboard_pipeline | |
from rvc.lib.tools.model_download import model_download_pipeline | |
config = Config() | |
current_script_directory = os.path.dirname(os.path.realpath(__file__)) | |
logs_path = os.path.join(current_script_directory, "logs") | |
# Get TTS Voices | |
with open(os.path.join("rvc", "lib", "tools", "tts_voices.json"), "r") as f: | |
voices_data = json.load(f) | |
locales = list({voice["Locale"] for voice in voices_data}) | |
# Infer | |
def run_infer_script( | |
f0up_key, | |
filter_radius, | |
index_rate, | |
rms_mix_rate, | |
protect, | |
hop_length, | |
f0method, | |
input_path, | |
output_path, | |
pth_path, | |
index_path, | |
split_audio, | |
f0autotune, | |
clean_audio, | |
clean_strength, | |
export_format, | |
): | |
infer_pipeline( | |
f0up_key, | |
filter_radius, | |
index_rate, | |
rms_mix_rate, | |
protect, | |
hop_length, | |
f0method, | |
input_path, | |
output_path, | |
pth_path, | |
index_path, | |
split_audio, | |
f0autotune, | |
clean_audio, | |
clean_strength, | |
export_format, | |
) | |
return f"File {input_path} inferred successfully.", output_path.replace( | |
".wav", f".{export_format.lower()}" | |
) | |
# Batch infer | |
def run_batch_infer_script( | |
f0up_key, | |
filter_radius, | |
index_rate, | |
rms_mix_rate, | |
protect, | |
hop_length, | |
f0method, | |
input_folder, | |
output_folder, | |
pth_path, | |
index_path, | |
split_audio, | |
f0autotune, | |
clean_audio, | |
clean_strength, | |
export_format, | |
): | |
audio_files = [ | |
f for f in os.listdir(input_folder) if f.endswith((".mp3", ".wav", ".flac")) | |
] | |
print(f"Detected {len(audio_files)} audio files for inference.") | |
for audio_file in audio_files: | |
if "_output" in audio_file: | |
pass | |
else: | |
input_path = os.path.join(input_folder, audio_file) | |
output_file_name = os.path.splitext(os.path.basename(audio_file))[0] | |
output_path = os.path.join( | |
output_folder, | |
f"{output_file_name}_output{os.path.splitext(audio_file)[1]}", | |
) | |
print(f"Inferring {input_path}...") | |
infer_pipeline( | |
f0up_key, | |
filter_radius, | |
index_rate, | |
rms_mix_rate, | |
protect, | |
hop_length, | |
f0method, | |
input_path, | |
output_path, | |
pth_path, | |
index_path, | |
split_audio, | |
f0autotune, | |
clean_audio, | |
clean_strength, | |
export_format, | |
) | |
return f"Files from {input_folder} inferred successfully." | |
# TTS | |
def run_tts_script( | |
tts_text, | |
tts_voice, | |
f0up_key, | |
filter_radius, | |
index_rate, | |
rms_mix_rate, | |
protect, | |
hop_length, | |
f0method, | |
output_tts_path, | |
output_rvc_path, | |
pth_path, | |
index_path, | |
split_audio, | |
f0autotune, | |
clean_audio, | |
clean_strength, | |
export_format, | |
): | |
tts_script_path = os.path.join("rvc", "lib", "tools", "tts.py") | |
if os.path.exists(output_tts_path): | |
os.remove(output_tts_path) | |
command_tts = [ | |
"python", | |
tts_script_path, | |
tts_text, | |
tts_voice, | |
output_tts_path, | |
] | |
subprocess.run(command_tts) | |
infer_pipeline( | |
f0up_key, | |
filter_radius, | |
index_rate, | |
rms_mix_rate, | |
protect, | |
hop_length, | |
f0method, | |
output_tts_path, | |
output_rvc_path, | |
pth_path, | |
index_path, | |
split_audio, | |
f0autotune, | |
clean_audio, | |
clean_strength, | |
export_format, | |
) | |
return f"Text {tts_text} synthesized successfully.", output_rvc_path.replace( | |
".wav", f".{export_format.lower()}" | |
) | |
# Preprocess | |
def run_preprocess_script(model_name, dataset_path, sampling_rate): | |
per = 3.0 if config.is_half else 3.7 | |
preprocess_script_path = os.path.join("rvc", "train", "preprocess", "preprocess.py") | |
command = [ | |
"python", | |
preprocess_script_path, | |
*map( | |
str, | |
[ | |
os.path.join(logs_path, model_name), | |
dataset_path, | |
sampling_rate, | |
per, | |
], | |
), | |
] | |
os.makedirs(os.path.join(logs_path, model_name), exist_ok=True) | |
subprocess.run(command) | |
return f"Model {model_name} preprocessed successfully." | |
# Extract | |
def run_extract_script(model_name, rvc_version, f0method, hop_length, sampling_rate): | |
model_path = os.path.join(logs_path, model_name) | |
extract_f0_script_path = os.path.join( | |
"rvc", "train", "extract", "extract_f0_print.py" | |
) | |
extract_feature_script_path = os.path.join( | |
"rvc", "train", "extract", "extract_feature_print.py" | |
) | |
command_1 = [ | |
"python", | |
extract_f0_script_path, | |
*map( | |
str, | |
[ | |
model_path, | |
f0method, | |
hop_length, | |
], | |
), | |
] | |
command_2 = [ | |
"python", | |
extract_feature_script_path, | |
*map( | |
str, | |
[ | |
config.device, | |
"1", | |
"0", | |
"0", | |
model_path, | |
rvc_version, | |
"True", | |
], | |
), | |
] | |
subprocess.run(command_1) | |
subprocess.run(command_2) | |
generate_config(rvc_version, sampling_rate, model_path) | |
generate_filelist(f0method, model_path, rvc_version, sampling_rate) | |
return f"Model {model_name} extracted successfully." | |
# Train | |
def run_train_script( | |
model_name, | |
rvc_version, | |
save_every_epoch, | |
save_only_latest, | |
save_every_weights, | |
total_epoch, | |
sampling_rate, | |
batch_size, | |
gpu, | |
pitch_guidance, | |
overtraining_detector, | |
overtraining_threshold, | |
pretrained, | |
custom_pretrained, | |
g_pretrained_path=None, | |
d_pretrained_path=None, | |
): | |
f0 = 1 if str(pitch_guidance) == "True" else 0 | |
latest = 1 if str(save_only_latest) == "True" else 0 | |
save_every = 1 if str(save_every_weights) == "True" else 0 | |
detector = 1 if str(overtraining_detector) == "True" else 0 | |
if str(pretrained) == "True": | |
if str(custom_pretrained) == "False": | |
pg, pd = pretrained_selector(f0)[rvc_version][sampling_rate] | |
else: | |
if g_pretrained_path is None or d_pretrained_path is None: | |
raise ValueError( | |
"Please provide the path to the pretrained G and D models." | |
) | |
pg, pd = g_pretrained_path, d_pretrained_path | |
else: | |
pg, pd = "", "" | |
train_script_path = os.path.join("rvc", "train", "train.py") | |
command = [ | |
"python", | |
train_script_path, | |
*map( | |
str, | |
[ | |
"-se", | |
save_every_epoch, | |
"-te", | |
total_epoch, | |
"-pg", | |
pg, | |
"-pd", | |
pd, | |
"-sr", | |
sampling_rate, | |
"-bs", | |
batch_size, | |
"-g", | |
gpu, | |
"-e", | |
os.path.join(logs_path, model_name), | |
"-v", | |
rvc_version, | |
"-l", | |
latest, | |
"-c", | |
"0", | |
"-sw", | |
save_every, | |
"-f0", | |
f0, | |
"-od", | |
detector, | |
"-ot", | |
overtraining_threshold, | |
], | |
), | |
] | |
subprocess.run(command) | |
run_index_script(model_name, rvc_version) | |
return f"Model {model_name} trained successfully." | |
# Index | |
def run_index_script(model_name, rvc_version): | |
index_script_path = os.path.join("rvc", "train", "process", "extract_index.py") | |
command = [ | |
"python", | |
index_script_path, | |
os.path.join(logs_path, model_name), | |
rvc_version, | |
] | |
subprocess.run(command) | |
return f"Index file for {model_name} generated successfully." | |
# Model extract | |
def run_model_extract_script( | |
pth_path, model_name, sampling_rate, pitch_guidance, rvc_version, epoch, step | |
): | |
f0 = 1 if str(pitch_guidance) == "True" else 0 | |
extract_small_model( | |
pth_path, model_name, sampling_rate, f0, rvc_version, epoch, step | |
) | |
return f"Model {model_name} extracted successfully." | |
# Model information | |
def run_model_information_script(pth_path): | |
print(model_information(pth_path)) | |
# Model blender | |
def run_model_blender_script(model_name, pth_path_1, pth_path_2, ratio): | |
message, model_blended = model_blender(model_name, pth_path_1, pth_path_2, ratio) | |
return message, model_blended | |
# Tensorboard | |
def run_tensorboard_script(): | |
launch_tensorboard_pipeline() | |
# Download | |
def run_download_script(model_link): | |
model_download_pipeline(model_link) | |
return f"Model downloaded successfully." | |
# Prerequisites | |
def run_prerequisites_script(pretraineds_v1, pretraineds_v2, models, exe): | |
prequisites_download_pipeline(pretraineds_v1, pretraineds_v2, models, exe) | |
return "Prerequisites installed successfully." | |
# Audio analyzer | |
def run_audio_analyzer_script(input_path, save_plot_path="logs/audio_analysis.png"): | |
audio_info, plot_path = analyze_audio(input_path, save_plot_path) | |
print( | |
f"Audio info of {input_path}: {audio_info}", | |
f"Audio file {input_path} analyzed successfully. Plot saved at: {plot_path}", | |
) | |
return audio_info, plot_path | |
# API | |
def run_api_script(ip, port): | |
command = [ | |
"env/Scripts/uvicorn.exe" if os.name == "nt" else "uvicorn", | |
"api:app", | |
"--host", | |
ip, | |
"--port", | |
port, | |
] | |
subprocess.run(command) | |
# Parse arguments | |
def parse_arguments(): | |
parser = argparse.ArgumentParser( | |
description="Run the main.py script with specific parameters." | |
) | |
subparsers = parser.add_subparsers( | |
title="subcommands", dest="mode", help="Choose a mode" | |
) | |
# Parser for 'infer' mode | |
infer_parser = subparsers.add_parser("infer", help="Run inference") | |
infer_parser.add_argument( | |
"--f0up_key", | |
type=str, | |
help="Value for f0up_key", | |
choices=[str(i) for i in range(-24, 25)], | |
default="0", | |
) | |
infer_parser.add_argument( | |
"--filter_radius", | |
type=str, | |
help="Value for filter_radius", | |
choices=[str(i) for i in range(11)], | |
default="3", | |
) | |
infer_parser.add_argument( | |
"--index_rate", | |
type=str, | |
help="Value for index_rate", | |
choices=[str(i / 10) for i in range(11)], | |
default="0.3", | |
) | |
infer_parser.add_argument( | |
"--rms_mix_rate", | |
type=str, | |
help="Value for rms_mix_rate", | |
choices=[str(i / 10) for i in range(11)], | |
default="1", | |
) | |
infer_parser.add_argument( | |
"--protect", | |
type=str, | |
help="Value for protect", | |
choices=[str(i / 10) for i in range(6)], | |
default="0.33", | |
) | |
infer_parser.add_argument( | |
"--hop_length", | |
type=str, | |
help="Value for hop_length", | |
choices=[str(i) for i in range(1, 513)], | |
default="128", | |
) | |
infer_parser.add_argument( | |
"--f0method", | |
type=str, | |
help="Value for f0method", | |
choices=[ | |
"pm", | |
"harvest", | |
"dio", | |
"crepe", | |
"crepe-tiny", | |
"rmvpe", | |
"fcpe", | |
"hybrid[crepe+rmvpe]", | |
"hybrid[crepe+fcpe]", | |
"hybrid[rmvpe+fcpe]", | |
"hybrid[crepe+rmvpe+fcpe]", | |
], | |
default="rmvpe", | |
) | |
infer_parser.add_argument("--input_path", type=str, help="Input path") | |
infer_parser.add_argument("--output_path", type=str, help="Output path") | |
infer_parser.add_argument("--pth_path", type=str, help="Path to the .pth file") | |
infer_parser.add_argument( | |
"--index_path", | |
type=str, | |
help="Path to the .index file", | |
) | |
infer_parser.add_argument( | |
"--split_audio", | |
type=str, | |
help="Enable split audio", | |
choices=["True", "False"], | |
default="False", | |
) | |
infer_parser.add_argument( | |
"--f0autotune", | |
type=str, | |
help="Enable autotune", | |
choices=["True", "False"], | |
default="False", | |
) | |
infer_parser.add_argument( | |
"--clean_audio", | |
type=str, | |
help="Enable clean audio", | |
choices=["True", "False"], | |
default="False", | |
) | |
infer_parser.add_argument( | |
"--clean_strength", | |
type=str, | |
help="Value for clean_strength", | |
choices=[str(i / 10) for i in range(11)], | |
default="0.7", | |
) | |
infer_parser.add_argument( | |
"--export_format", | |
type=str, | |
help="Export format", | |
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], | |
default="WAV", | |
) | |
# Parser for 'batch_infer' mode | |
batch_infer_parser = subparsers.add_parser( | |
"batch_infer", help="Run batch inference" | |
) | |
batch_infer_parser.add_argument( | |
"--f0up_key", | |
type=str, | |
help="Value for f0up_key", | |
choices=[str(i) for i in range(-24, 25)], | |
default="0", | |
) | |
batch_infer_parser.add_argument( | |
"--filter_radius", | |
type=str, | |
help="Value for filter_radius", | |
choices=[str(i) for i in range(11)], | |
default="3", | |
) | |
batch_infer_parser.add_argument( | |
"--index_rate", | |
type=str, | |
help="Value for index_rate", | |
choices=[str(i / 10) for i in range(11)], | |
default="0.3", | |
) | |
batch_infer_parser.add_argument( | |
"--rms_mix_rate", | |
type=str, | |
help="Value for rms_mix_rate", | |
choices=[str(i / 10) for i in range(11)], | |
default="1", | |
) | |
batch_infer_parser.add_argument( | |
"--protect", | |
type=str, | |
help="Value for protect", | |
choices=[str(i / 10) for i in range(6)], | |
default="0.33", | |
) | |
batch_infer_parser.add_argument( | |
"--hop_length", | |
type=str, | |
help="Value for hop_length", | |
choices=[str(i) for i in range(1, 513)], | |
default="128", | |
) | |
batch_infer_parser.add_argument( | |
"--f0method", | |
type=str, | |
help="Value for f0method", | |
choices=[ | |
"pm", | |
"harvest", | |
"dio", | |
"crepe", | |
"crepe-tiny", | |
"rmvpe", | |
"fcpe", | |
"hybrid[crepe+rmvpe]", | |
"hybrid[crepe+fcpe]", | |
"hybrid[rmvpe+fcpe]", | |
"hybrid[crepe+rmvpe+fcpe]", | |
], | |
default="rmvpe", | |
) | |
batch_infer_parser.add_argument("--input_folder", type=str, help="Input folder") | |
batch_infer_parser.add_argument("--output_folder", type=str, help="Output folder") | |
batch_infer_parser.add_argument( | |
"--pth_path", type=str, help="Path to the .pth file" | |
) | |
batch_infer_parser.add_argument( | |
"--index_path", | |
type=str, | |
help="Path to the .index file", | |
) | |
batch_infer_parser.add_argument( | |
"--split_audio", | |
type=str, | |
help="Enable split audio", | |
choices=["True", "False"], | |
default="False", | |
) | |
batch_infer_parser.add_argument( | |
"--f0autotune", | |
type=str, | |
help="Enable autotune", | |
choices=["True", "False"], | |
default="False", | |
) | |
batch_infer_parser.add_argument( | |
"--clean_audio", | |
type=str, | |
help="Enable clean audio", | |
choices=["True", "False"], | |
default="False", | |
) | |
batch_infer_parser.add_argument( | |
"--clean_strength", | |
type=str, | |
help="Value for clean_strength", | |
choices=[str(i / 10) for i in range(11)], | |
default="0.7", | |
) | |
batch_infer_parser.add_argument( | |
"--export_format", | |
type=str, | |
help="Export format", | |
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], | |
default="WAV", | |
) | |
# Parser for 'tts' mode | |
tts_parser = subparsers.add_parser("tts", help="Run TTS") | |
tts_parser.add_argument( | |
"--tts_text", | |
type=str, | |
help="Text to be synthesized", | |
) | |
tts_parser.add_argument( | |
"--tts_voice", | |
type=str, | |
help="Voice to be used", | |
choices=locales, | |
) | |
tts_parser.add_argument( | |
"--f0up_key", | |
type=str, | |
help="Value for f0up_key", | |
choices=[str(i) for i in range(-24, 25)], | |
default="0", | |
) | |
tts_parser.add_argument( | |
"--filter_radius", | |
type=str, | |
help="Value for filter_radius", | |
choices=[str(i) for i in range(11)], | |
default="3", | |
) | |
tts_parser.add_argument( | |
"--index_rate", | |
type=str, | |
help="Value for index_rate", | |
choices=[str(i / 10) for i in range(11)], | |
default="0.3", | |
) | |
tts_parser.add_argument( | |
"--rms_mix_rate", | |
type=str, | |
help="Value for rms_mix_rate", | |
choices=[str(i / 10) for i in range(11)], | |
default="1", | |
) | |
tts_parser.add_argument( | |
"--protect", | |
type=str, | |
help="Value for protect", | |
choices=[str(i / 10) for i in range(6)], | |
default="0.33", | |
) | |
tts_parser.add_argument( | |
"--hop_length", | |
type=str, | |
help="Value for hop_length", | |
choices=[str(i) for i in range(1, 513)], | |
default="128", | |
) | |
tts_parser.add_argument( | |
"--f0method", | |
type=str, | |
help="Value for f0method", | |
choices=[ | |
"pm", | |
"harvest", | |
"dio", | |
"crepe", | |
"crepe-tiny", | |
"rmvpe", | |
"fcpe", | |
"hybrid[crepe+rmvpe]", | |
"hybrid[crepe+fcpe]", | |
"hybrid[rmvpe+fcpe]", | |
"hybrid[crepe+rmvpe+fcpe]", | |
], | |
default="rmvpe", | |
) | |
tts_parser.add_argument("--output_tts_path", type=str, help="Output tts path") | |
tts_parser.add_argument("--output_rvc_path", type=str, help="Output rvc path") | |
tts_parser.add_argument("--pth_path", type=str, help="Path to the .pth file") | |
tts_parser.add_argument( | |
"--index_path", | |
type=str, | |
help="Path to the .index file", | |
) | |
tts_parser.add_argument( | |
"--split_audio", | |
type=str, | |
help="Enable split audio", | |
choices=["True", "False"], | |
default="False", | |
) | |
tts_parser.add_argument( | |
"--f0autotune", | |
type=str, | |
help="Enable autotune", | |
choices=["True", "False"], | |
default="False", | |
) | |
tts_parser.add_argument( | |
"--clean_audio", | |
type=str, | |
help="Enable clean audio", | |
choices=["True", "False"], | |
default="False", | |
) | |
tts_parser.add_argument( | |
"--clean_strength", | |
type=str, | |
help="Value for clean_strength", | |
choices=[str(i / 10) for i in range(11)], | |
default="0.7", | |
) | |
tts_parser.add_argument( | |
"--export_format", | |
type=str, | |
help="Export format", | |
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], | |
default="WAV", | |
) | |
# Parser for 'preprocess' mode | |
preprocess_parser = subparsers.add_parser("preprocess", help="Run preprocessing") | |
preprocess_parser.add_argument("--model_name", type=str, help="Name of the model") | |
preprocess_parser.add_argument( | |
"--dataset_path", | |
type=str, | |
help="Path to the dataset", | |
) | |
preprocess_parser.add_argument( | |
"--sampling_rate", | |
type=str, | |
help="Sampling rate", | |
choices=["32000", "40000", "48000"], | |
) | |
# Parser for 'extract' mode | |
extract_parser = subparsers.add_parser("extract", help="Run extract") | |
extract_parser.add_argument( | |
"--model_name", | |
type=str, | |
help="Name of the model", | |
) | |
extract_parser.add_argument( | |
"--rvc_version", | |
type=str, | |
help="Version of the model", | |
choices=["v1", "v2"], | |
default="v2", | |
) | |
extract_parser.add_argument( | |
"--f0method", | |
type=str, | |
help="Value for f0method", | |
choices=[ | |
"pm", | |
"harvest", | |
"dio", | |
"crepe", | |
"crepe-tiny", | |
"rmvpe", | |
], | |
default="rmvpe", | |
) | |
extract_parser.add_argument( | |
"--hop_length", | |
type=str, | |
help="Value for hop_length", | |
choices=[str(i) for i in range(1, 513)], | |
default="128", | |
) | |
extract_parser.add_argument( | |
"--sampling_rate", | |
type=str, | |
help="Sampling rate", | |
choices=["32000", "40000", "48000"], | |
) | |
# Parser for 'train' mode | |
train_parser = subparsers.add_parser("train", help="Run training") | |
train_parser.add_argument( | |
"--model_name", | |
type=str, | |
help="Name of the model", | |
) | |
train_parser.add_argument( | |
"--rvc_version", | |
type=str, | |
help="Version of the model", | |
choices=["v1", "v2"], | |
default="v2", | |
) | |
train_parser.add_argument( | |
"--save_every_epoch", | |
type=str, | |
help="Save every epoch", | |
choices=[str(i) for i in range(1, 101)], | |
) | |
train_parser.add_argument( | |
"--save_only_latest", | |
type=str, | |
help="Save weight only at last epoch", | |
choices=["True", "False"], | |
default="False", | |
) | |
train_parser.add_argument( | |
"--save_every_weights", | |
type=str, | |
help="Save weight every epoch", | |
choices=["True", "False"], | |
default="True", | |
) | |
train_parser.add_argument( | |
"--total_epoch", | |
type=str, | |
help="Total epoch", | |
choices=[str(i) for i in range(1, 10001)], | |
default="1000", | |
) | |
train_parser.add_argument( | |
"--sampling_rate", | |
type=str, | |
help="Sampling rate", | |
choices=["32000", "40000", "48000"], | |
) | |
train_parser.add_argument( | |
"--batch_size", | |
type=str, | |
help="Batch size", | |
choices=[str(i) for i in range(1, 51)], | |
default="8", | |
) | |
train_parser.add_argument( | |
"--gpu", | |
type=str, | |
help="GPU number", | |
choices=[str(i) for i in range(0, 11)], | |
default="0", | |
) | |
train_parser.add_argument( | |
"--pitch_guidance", | |
type=str, | |
help="Pitch guidance", | |
choices=["True", "False"], | |
default="True", | |
) | |
train_parser.add_argument( | |
"--pretrained", | |
type=str, | |
help="Pretrained", | |
choices=["True", "False"], | |
default="True", | |
) | |
train_parser.add_argument( | |
"--custom_pretrained", | |
type=str, | |
help="Custom pretrained", | |
choices=["True", "False"], | |
default="False", | |
) | |
train_parser.add_argument( | |
"--g_pretrained_path", | |
type=str, | |
nargs="?", | |
default=None, | |
help="Path to the pretrained G file", | |
) | |
train_parser.add_argument( | |
"--d_pretrained_path", | |
type=str, | |
nargs="?", | |
default=None, | |
help="Path to the pretrained D file", | |
) | |
train_parser.add_argument( | |
"--overtraining_detector", | |
type=str, | |
help="Overtraining detector", | |
choices=["True", "False"], | |
default="False", | |
) | |
train_parser.add_argument( | |
"--overtraining_threshold", | |
type=str, | |
help="Overtraining threshold", | |
choices=[str(i) for i in range(1, 101)], | |
default="50", | |
) | |
# Parser for 'index' mode | |
index_parser = subparsers.add_parser("index", help="Generate index file") | |
index_parser.add_argument( | |
"--model_name", | |
type=str, | |
help="Name of the model", | |
) | |
index_parser.add_argument( | |
"--rvc_version", | |
type=str, | |
help="Version of the model", | |
choices=["v1", "v2"], | |
default="v2", | |
) | |
# Parser for 'model_extract' mode | |
model_extract_parser = subparsers.add_parser("model_extract", help="Extract model") | |
model_extract_parser.add_argument( | |
"--pth_path", | |
type=str, | |
help="Path to the .pth file", | |
) | |
model_extract_parser.add_argument( | |
"--model_name", | |
type=str, | |
help="Name of the model", | |
) | |
model_extract_parser.add_argument( | |
"--sampling_rate", | |
type=str, | |
help="Sampling rate", | |
choices=["40000", "48000"], | |
) | |
model_extract_parser.add_argument( | |
"--pitch_guidance", | |
type=str, | |
help="Pitch guidance", | |
choices=["True", "False"], | |
) | |
model_extract_parser.add_argument( | |
"--rvc_version", | |
type=str, | |
help="Version of the model", | |
choices=["v1", "v2"], | |
default="v2", | |
) | |
model_extract_parser.add_argument( | |
"--epoch", | |
type=str, | |
help="Epochs of the model", | |
choices=[str(i) for i in range(1, 10001)], | |
) | |
model_extract_parser.add_argument( | |
"--step", | |
type=str, | |
help="Steps of the model", | |
) | |
# Parser for 'model_information' mode | |
model_information_parser = subparsers.add_parser( | |
"model_information", help="Print model information" | |
) | |
model_information_parser.add_argument( | |
"--pth_path", | |
type=str, | |
help="Path to the .pth file", | |
) | |
# Parser for 'model_blender' mode | |
model_blender_parser = subparsers.add_parser( | |
"model_blender", help="Fuse two models" | |
) | |
model_blender_parser.add_argument( | |
"--model_name", | |
type=str, | |
help="Name of the model", | |
) | |
model_blender_parser.add_argument( | |
"--pth_path_1", | |
type=str, | |
help="Path to the first .pth file", | |
) | |
model_blender_parser.add_argument( | |
"--pth_path_2", | |
type=str, | |
help="Path to the second .pth file", | |
) | |
model_blender_parser.add_argument( | |
"--ratio", | |
type=str, | |
help="Value for blender ratio", | |
choices=[str(i / 10) for i in range(11)], | |
default="0.5", | |
) | |
# Parser for 'tensorboard' mode | |
subparsers.add_parser("tensorboard", help="Run tensorboard") | |
# Parser for 'download' mode | |
download_parser = subparsers.add_parser("download", help="Download models") | |
download_parser.add_argument( | |
"--model_link", | |
type=str, | |
help="Link of the model", | |
) | |
# Parser for 'prerequisites' mode | |
prerequisites_parser = subparsers.add_parser( | |
"prerequisites", help="Install prerequisites" | |
) | |
prerequisites_parser.add_argument( | |
"--pretraineds_v1", | |
type=str, | |
choices=["True", "False"], | |
default="True", | |
help="Download pretrained models for v1", | |
) | |
prerequisites_parser.add_argument( | |
"--pretraineds_v2", | |
type=str, | |
choices=["True", "False"], | |
default="True", | |
help="Download pretrained models for v2", | |
) | |
prerequisites_parser.add_argument( | |
"--models", | |
type=str, | |
choices=["True", "False"], | |
default="True", | |
help="Donwload models", | |
) | |
prerequisites_parser.add_argument( | |
"--exe", | |
type=str, | |
choices=["True", "False"], | |
default="True", | |
help="Download executables", | |
) | |
# Parser for 'audio_analyzer' mode | |
audio_analyzer = subparsers.add_parser("audio_analyzer", help="Run audio analyzer") | |
audio_analyzer.add_argument( | |
"--input_path", | |
type=str, | |
help="Path to the input audio file", | |
) | |
# Parser for 'api' mode | |
api_parser = subparsers.add_parser("api", help="Run the API") | |
api_parser.add_argument("--ip", type=str, help="IP address", default="127.0.0.1") | |
api_parser.add_argument("--port", type=str, help="Port", default="8000") | |
return parser.parse_args() | |
def main(): | |
if len(sys.argv) == 1: | |
print("Please run the script with '-h' for more information.") | |
sys.exit(1) | |
args = parse_arguments() | |
try: | |
if args.mode == "infer": | |
run_infer_script( | |
str(args.f0up_key), | |
str(args.filter_radius), | |
str(args.index_rate), | |
str(args.rms_mix_rate), | |
str(args.protect), | |
str(args.hop_length), | |
str(args.f0method), | |
str(args.input_path), | |
str(args.output_path), | |
str(args.pth_path), | |
str(args.index_path), | |
str(args.split_audio), | |
str(args.f0autotune), | |
str(args.clean_audio), | |
str(args.clean_strength), | |
str(args.export_format), | |
) | |
elif args.mode == "batch_infer": | |
run_batch_infer_script( | |
str(args.f0up_key), | |
str(args.filter_radius), | |
str(args.index_rate), | |
str(args.rms_mix_rate), | |
str(args.protect), | |
str(args.hop_length), | |
str(args.f0method), | |
str(args.input_folder), | |
str(args.output_folder), | |
str(args.pth_path), | |
str(args.index_path), | |
str(args.split_audio), | |
str(args.f0autotune), | |
str(args.clean_audio), | |
str(args.clean_strength), | |
str(args.export_format), | |
) | |
elif args.mode == "tts": | |
run_tts_script( | |
str(args.tts_text), | |
str(args.tts_voice), | |
str(args.f0up_key), | |
str(args.filter_radius), | |
str(args.index_rate), | |
str(args.rms_mix_rate), | |
str(args.protect), | |
str(args.hop_length), | |
str(args.f0method), | |
str(args.output_tts_path), | |
str(args.output_rvc_path), | |
str(args.pth_path), | |
str(args.index_path), | |
str(args.split_audio), | |
str(args.f0autotune), | |
str(args.clean_audio), | |
str(args.clean_strength), | |
str(args.export_format), | |
) | |
elif args.mode == "preprocess": | |
run_preprocess_script( | |
str(args.model_name), | |
str(args.dataset_path), | |
str(args.sampling_rate), | |
) | |
elif args.mode == "extract": | |
run_extract_script( | |
str(args.model_name), | |
str(args.rvc_version), | |
str(args.f0method), | |
str(args.hop_length), | |
str(args.sampling_rate), | |
) | |
elif args.mode == "train": | |
run_train_script( | |
str(args.model_name), | |
str(args.rvc_version), | |
str(args.save_every_epoch), | |
str(args.save_only_latest), | |
str(args.save_every_weights), | |
str(args.total_epoch), | |
str(args.sampling_rate), | |
str(args.batch_size), | |
str(args.gpu), | |
str(args.pitch_guidance), | |
str(args.pretrained), | |
str(args.custom_pretrained), | |
str(args.g_pretrained_path), | |
str(args.d_pretrained_path), | |
str(args.overtraining_detector), | |
str(args.overtraining_threshold), | |
) | |
elif args.mode == "index": | |
run_index_script( | |
str(args.model_name), | |
str(args.rvc_version), | |
) | |
elif args.mode == "model_extract": | |
run_model_extract_script( | |
str(args.pth_path), | |
str(args.model_name), | |
str(args.sampling_rate), | |
str(args.pitch_guidance), | |
str(args.rvc_version), | |
str(args.epoch), | |
str(args.step), | |
) | |
elif args.mode == "model_information": | |
run_model_information_script( | |
str(args.pth_path), | |
) | |
elif args.mode == "model_blender": | |
run_model_blender_script( | |
str(args.model_name), | |
str(args.pth_path_1), | |
str(args.pth_path_2), | |
str(args.ratio), | |
) | |
elif args.mode == "tensorboard": | |
run_tensorboard_script() | |
elif args.mode == "download": | |
run_download_script( | |
str(args.model_link), | |
) | |
elif args.mode == "prerequisites": | |
run_prerequisites_script( | |
str(args.pretraineds_v1), | |
str(args.pretraineds_v2), | |
str(args.models), | |
str(args.exe), | |
) | |
elif args.mode == "audio_analyzer": | |
run_audio_analyzer_script( | |
str(args.input_path), | |
) | |
elif args.mode == "api": | |
run_api_script( | |
str(args.ip), | |
str(args.port), | |
) | |
except Exception as error: | |
print(f"Error: {error}") | |
if __name__ == "__main__": | |
main() | |