Applio29 / tabs /download /download.py
aitronz's picture
initial
85d3b29
raw
history blame
2.62 kB
import os, sys, shutil
import tempfile
import gradio as gr
from core import run_download_script
from assets.i18n.i18n import I18nAuto
from rvc.lib.utils import format_title
i18n = I18nAuto()
now_dir = os.getcwd()
sys.path.append(now_dir)
gradio_temp_dir = os.path.join(tempfile.gettempdir(), "gradio")
if os.path.exists(gradio_temp_dir):
shutil.rmtree(gradio_temp_dir)
def save_drop_model(dropbox):
if "pth" not in dropbox and "index" not in dropbox:
raise gr.Error(
message="The file you dropped is not a valid model file. Please try again."
)
else:
file_name = format_title(os.path.basename(dropbox))
if ".pth" in dropbox:
model_name = format_title(file_name.split(".pth")[0])
else:
if "v2" not in dropbox:
model_name = format_title(
file_name.split("_nprobe_1_")[1].split("_v1")[0]
)
else:
model_name = format_title(
file_name.split("_nprobe_1_")[1].split("_v2")[0]
)
model_path = os.path.join(now_dir, "logs", model_name)
if not os.path.exists(model_path):
os.makedirs(model_path)
if os.path.exists(os.path.join(model_path, file_name)):
os.remove(os.path.join(model_path, file_name))
os.rename(dropbox, os.path.join(model_path, file_name))
print(f"{file_name} saved in {model_path}")
gr.Info(f"{file_name} saved in {model_path}")
return None
def download_tab():
with gr.Column():
gr.Markdown(value=i18n("## Download Model"))
model_link = gr.Textbox(
label=i18n("Model Link"),
placeholder=i18n("Introduce the model link"),
interactive=True,
)
model_download_output_info = gr.Textbox(
label=i18n("Output Information"),
value="",
max_lines=8,
interactive=False,
)
model_download_button = gr.Button(i18n("Download Model"))
model_download_button.click(
run_download_script,
[model_link],
model_download_output_info,
api_name="model_download",
)
gr.Markdown(value=i18n("## Drop files"))
dropbox = gr.File(
label=i18n(
"Drag your .pth file and .index file into this space. Drag one and then the other."
),
type="filepath",
)
dropbox.upload(
fn=save_drop_model,
inputs=[dropbox],
outputs=[dropbox],
)