Applio33 / rvc /train /process_ckpt.py
aitronz's picture
initial
85d3b29
raw
history blame
6.51 kB
import os
import torch
from collections import OrderedDict
logs_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "logs")
def replace_keys_in_dict(d, old_key_part, new_key_part):
# Use OrderedDict if the original is an OrderedDict
if isinstance(d, OrderedDict):
updated_dict = OrderedDict()
else:
updated_dict = {}
for key, value in d.items():
# Replace the key part if found
new_key = key.replace(old_key_part, new_key_part)
# If the value is a dictionary, apply the function recursively
if isinstance(value, dict):
value = replace_keys_in_dict(value, old_key_part, new_key_part)
updated_dict[new_key] = value
return updated_dict
def save_final(ckpt, sr, if_f0, name, epoch, version, hps):
try:
pth_file = f"{name}_{epoch}e.pth"
pth_file_path = os.path.join("logs", pth_file)
pth_file_old_version_path = os.path.join("logs", f"{pth_file}_old_version.pth")
opt = OrderedDict(
weight={
key: value.half() for key, value in ckpt.items() if "enc_q" not in key
}
)
opt["config"] = [
hps.data.filter_length // 2 + 1,
32,
hps.model.inter_channels,
hps.model.hidden_channels,
hps.model.filter_channels,
hps.model.n_heads,
hps.model.n_layers,
hps.model.kernel_size,
hps.model.p_dropout,
hps.model.resblock,
hps.model.resblock_kernel_sizes,
hps.model.resblock_dilation_sizes,
hps.model.upsample_rates,
hps.model.upsample_initial_channel,
hps.model.upsample_kernel_sizes,
hps.model.spk_embed_dim,
hps.model.gin_channels,
hps.data.sampling_rate,
]
opt["info"], opt["sr"], opt["f0"], opt["version"] = epoch, sr, if_f0, version
torch.save(opt, pth_file_path)
model = torch.load(pth_file_path, map_location=torch.device("cpu"))
torch.save(
replace_keys_in_dict(
replace_keys_in_dict(
model, ".parametrizations.weight.original1", ".weight_v"
),
".parametrizations.weight.original0",
".weight_g",
),
pth_file_old_version_path,
)
os.remove(pth_file_path)
os.rename(pth_file_old_version_path, pth_file_path)
return "Success!"
except Exception as error:
print(error)
def extract_small_model(path, name, sr, if_f0, info, version):
try:
ckpt = torch.load(path, map_location="cpu")
if "model" in ckpt:
ckpt = ckpt["model"]
opt = OrderedDict(
weight={
key: value.half() for key, value in ckpt.items() if "enc_q" not in key
}
)
opt["config"] = {
"40000": [
1025,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 10, 2, 2],
512,
[16, 16, 4, 4],
109,
256,
40000,
],
"48000": {
"v1": [
1025,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 6, 2, 2, 2],
512,
[16, 16, 4, 4, 4],
109,
256,
48000,
],
"v2": [
1025,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[12, 10, 2, 2],
512,
[24, 20, 4, 4],
109,
256,
48000,
],
},
"32000": {
"v1": [
513,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 4, 2, 2, 2],
512,
[16, 16, 4, 4, 4],
109,
256,
32000,
],
"v2": [
513,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 8, 2, 2],
512,
[20, 16, 4, 4],
109,
256,
32000,
],
},
}
opt["config"] = (
opt["config"][sr]
if isinstance(opt["config"][sr], list)
else opt["config"][sr][version]
)
if info == "":
info = "Extracted model."
opt["info"], opt["version"], opt["sr"], opt["f0"] = (
info,
version,
sr,
int(if_f0),
)
torch.save(opt, f"logs/{name}/{name}.pth")
return "Success."
except Exception as error:
print(error)
def change_info(path, info, name):
try:
ckpt = torch.load(path, map_location="cpu")
ckpt["info"] = info
if name == "":
name = os.path.basename(path)
torch.save(ckpt, f"logs/weights/{name}")
return "Success."
except Exception as error:
print(error)