Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModel | |
| from utils import ( | |
| convert_frames_to_gif, | |
| download_youtube_video, | |
| get_num_total_frames, | |
| sample_frames_from_video_file, | |
| ) | |
| FRAME_SAMPLING_RATE = 4 | |
| DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot" | |
| VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS = [ | |
| "microsoft/xclip-base-patch32", | |
| "microsoft/xclip-base-patch16-zero-shot", | |
| "microsoft/xclip-base-patch16-kinetics-600", | |
| "microsoft/xclip-large-patch14ft/xclip-base-patch32-16-frames", | |
| "microsoft/xclip-large-patch14", | |
| "microsoft/xclip-base-patch16-hmdb-4-shot", | |
| "microsoft/xclip-base-patch16-16-frames", | |
| "microsoft/xclip-base-patch16-hmdb-2-shot", | |
| "microsoft/xclip-base-patch16-ucf-2-shot", | |
| "microsoft/xclip-base-patch16-ucf-8-shot", | |
| "microsoft/xclip-base-patch16", | |
| "microsoft/xclip-base-patch16-hmdb-8-shot", | |
| "microsoft/xclip-base-patch16-hmdb-16-shot", | |
| "microsoft/xclip-base-patch16-ucf-16-shot", | |
| ] | |
| processor = AutoProcessor.from_pretrained(DEFAULT_MODEL) | |
| model = AutoModel.from_pretrained(DEFAULT_MODEL) | |
| examples = [ | |
| [ | |
| "https://www.youtu.be/l1dBM8ZECao", | |
| "sleeping dog,cat fight club,birds of prey", | |
| ], | |
| [ | |
| "https://youtu.be/VMj-3S1tku0", | |
| "programming course,eating spaghetti,playing football", | |
| ], | |
| [ | |
| "https://youtu.be/BRw7rvLdGzU", | |
| "game of thrones,the lord of the rings,vikings", | |
| ], | |
| ] | |
| def select_model(model_name): | |
| global processor, model | |
| processor = AutoProcessor.from_pretrained(model_name) | |
| model = AutoModel.from_pretrained(model_name) | |
| def predict(youtube_url_or_file_path, labels_text): | |
| if youtube_url_or_file_path.startswith("http"): | |
| video_path = download_youtube_video(youtube_url_or_file_path) | |
| else: | |
| video_path = youtube_url_or_file_path | |
| # rearrange sampling rate based on video length and model input length | |
| num_total_frames = get_num_total_frames(video_path) | |
| num_model_input_frames = model.config.vision_config.num_frames | |
| if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames: | |
| frame_sampling_rate = num_total_frames // num_model_input_frames | |
| else: | |
| frame_sampling_rate = FRAME_SAMPLING_RATE | |
| labels = labels_text.split(",") | |
| frames = sample_frames_from_video_file( | |
| video_path, num_model_input_frames, frame_sampling_rate | |
| ) | |
| gif_path = convert_frames_to_gif(frames, save_path="video.gif") | |
| inputs = processor( | |
| text=labels, videos=list(frames), return_tensors="pt", padding=True | |
| ) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy() | |
| label_to_prob = {} | |
| for ind, label in enumerate(labels): | |
| label_to_prob[label] = float(probs[ind]) | |
| return label_to_prob, gif_path | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown( | |
| "# **<p align='center'>PROGTOG VIOLENCE DETECTION</p>**" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_names_dropdown = gr.Dropdown( | |
| choices=VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS, | |
| label="Model:", | |
| show_label=True, | |
| value=DEFAULT_MODEL, | |
| ) | |
| model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown) | |
| with gr.Tab(label="Youtube URL"): | |
| gr.Markdown( | |
| "### **Youtube URL**" | |
| ) | |
| youtube_url = gr.Textbox(label="Youtube URL:", show_label=True) | |
| youtube_url_labels_text = gr.Textbox( | |
| label="Labels Text:", show_label=True | |
| ) | |
| youtube_url_predict_btn = gr.Button(value="Predict") | |
| with gr.Tab(label="Local File"): | |
| gr.Markdown( | |
| "### **Tags**" | |
| ) | |
| video_file = gr.Video(label="Video File:", show_label=True) | |
| local_video_labels_text = gr.Textbox( | |
| label="Labels Text:", show_label=True | |
| ) | |
| local_video_predict_btn = gr.Button(value="Predict") | |
| with gr.Column(): | |
| video_gif = gr.Image( | |
| label="Input Clip", | |
| show_label=True, | |
| ) | |
| with gr.Column(): | |
| predictions = gr.Label(label="Predictions:", show_label=True) | |
| # gr.Markdown("**Examples:**") | |
| # gr.Examples( | |
| # examples, | |
| # [youtube_url, youtube_url_labels_text], | |
| # [predictions, video_gif], | |
| # fn=predict, | |
| # cache_examples=True, | |
| # ) | |
| youtube_url_predict_btn.click( | |
| predict, | |
| inputs=[youtube_url, youtube_url_labels_text], | |
| outputs=[predictions, video_gif], | |
| ) | |
| local_video_predict_btn.click( | |
| predict, | |
| inputs=[video_file, local_video_labels_text], | |
| outputs=[predictions, video_gif], | |
| ) | |
| # gr.Markdown( | |
| # """ | |
| # \n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>. | |
| # <br> Based on this <a href=\"https://huggingface.co/docs/transformers/main/model_doc/xclip">HuggingFace model</a>. | |
| # """ | |
| # ) | |
| app.launch() |