backend / src /envs.py
meg-huggingface
Inference endpoints and parallelism.
7dd405e
raw
history blame
1.35 kB
import os
from huggingface_hub import HfApi
# ----------------------------------
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
PERSPECTIVE_API_KEY = os.environ.get("PERSPECTIVE_API_KEY")
OWNER = "meg"
DEVICE = "cuda:0" #if you add compute, for harness evaluations
EVAL_CUTOFF = 10 # !!!! For testing, should be None for actual evaluations!!!
NUM_FEWSHOT = 0 # Change with your few shot for the Harness evaluations
TASKS_HARNESS = ["realtoxicityprompts"]#, "toxigen", "logiqa"]
# For lighteval evaluations
ACCELERATOR = "cpu"
REGION = "us-east-1"
VENDOR = "aws"
TASKS_LIGHTEVAL = "lighteval|anli:r1|0|0,lighteval|logiqa|0|0"
# To add your own tasks, edit the custom file and launch it with `custom|myothertask|0|0``
# ---------------------------------------------------
REPO_ID = f"{OWNER}/leaderboard"
QUEUE_REPO = f"{OWNER}/requests"
RESULTS_REPO = f"{OWNER}/results"
# If you setup a cache later, just change HF_HOME
CACHE_PATH=os.getenv("HF_HOME", ".")
# Local caches
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
REFRESH_RATE = 10 * 60 # 10 min
NUM_LINES_VISUALIZE = 300
API = HfApi(token=TOKEN)