Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from diffusers.models.attention_processor import Attention | |
class CrossAttention(nn.Module): | |
""" | |
CrossAttention module implements per-pixel temporal attention to fuse the conditional attention module with the base module. | |
Args: | |
input_channels (int): Number of input channels. | |
attention_head_dim (int): Dimension of attention head. | |
norm_num_groups (int): Number of groups for GroupNorm normalization (default is 32). | |
Attributes: | |
attention (Attention): Attention module for computing attention scores. | |
norm (torch.nn.GroupNorm): Group normalization layer. | |
proj_in (nn.Linear): Linear layer for projecting input data. | |
proj_out (nn.Linear): Linear layer for projecting output data. | |
dropout (nn.Dropout): Dropout layer for regularization. | |
Methods: | |
forward(hidden_state, encoder_hidden_states, num_frames, num_conditional_frames): | |
Forward pass of the CrossAttention module. | |
""" | |
def __init__(self, input_channels, attention_head_dim, norm_num_groups=32): | |
super().__init__() | |
self.attention = Attention( | |
query_dim=input_channels, cross_attention_dim=input_channels, heads=input_channels//attention_head_dim, dim_head=attention_head_dim, bias=False, upcast_attention=False) | |
self.norm = torch.nn.GroupNorm( | |
num_groups=norm_num_groups, num_channels=input_channels, eps=1e-6, affine=True) | |
self.proj_in = nn.Linear(input_channels, input_channels) | |
self.proj_out = nn.Linear(input_channels, input_channels) | |
self.dropout = nn.Dropout(p=0.25) | |
def forward(self, hidden_state, encoder_hidden_states, num_frames, num_conditional_frames): | |
""" | |
The input hidden state is normalized, then projected using a linear layer. | |
Multi-head cross attention is computed between the hidden state (latent of noisy video) and encoder hidden states (CLIP image encoder). | |
The output is projected using a linear layer. | |
We apply dropout to the newly generated frames (without the control frames). | |
Args: | |
hidden_state (torch.Tensor): Input hidden state tensor. | |
encoder_hidden_states (torch.Tensor): Encoder hidden states tensor. | |
num_frames (int): Number of frames. | |
num_conditional_frames (int): Number of conditional frames. | |
Returns: | |
output (torch.Tensor): Output tensor after processing with attention mechanism. | |
""" | |
h, w = hidden_state.shape[2], hidden_state.shape[3] | |
hidden_state_norm = rearrange( | |
hidden_state, "(B F) C H W -> B C F H W", F=num_frames) | |
hidden_state_norm = self.norm(hidden_state_norm) | |
hidden_state_norm = rearrange( | |
hidden_state_norm, "B C F H W -> (B H W) F C") | |
hidden_state_norm = self.proj_in(hidden_state_norm) | |
attn = self.attention(hidden_state_norm, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=None, | |
) | |
# proj_out | |
residual = self.proj_out(attn) # (B H W) F C | |
hidden_state = rearrange( | |
hidden_state, "(B F) ... -> B F ...", F=num_frames) | |
hidden_state = torch.cat([hidden_state[:, :num_conditional_frames], self.dropout( | |
hidden_state[:, num_conditional_frames:])], dim=1) | |
hidden_state = rearrange(hidden_state, "B F ... -> (B F) ... ") | |
residual = rearrange( | |
residual, "(B H W) F C -> (B F) C H W", H=h, W=w) | |
output = hidden_state + residual | |
return output | |
class ConditionalModel(nn.Module): | |
""" | |
ConditionalModel module performs the fusion of the conditional attention module to be base model. | |
Args: | |
input_channels (int): Number of input channels. | |
conditional_model (str): Type of conditional model to use. Currently only "cross_attention" is implemented. | |
attention_head_dim (int): Dimension of attention head (default is 64). | |
Attributes: | |
temporal_transformer (CrossAttention): CrossAttention module for temporal transformation. | |
conditional_model (str): Type of conditional model used. | |
Methods: | |
forward(sample, conditioning, num_frames=None, num_conditional_frames=None): | |
Forward pass of the ConditionalModel module. | |
""" | |
def __init__(self, input_channels, conditional_model: str, attention_head_dim=64): | |
super().__init__() | |
if conditional_model == "cross_attention": | |
self.temporal_transformer = CrossAttention( | |
input_channels=input_channels, attention_head_dim=attention_head_dim) | |
else: | |
raise NotImplementedError( | |
f"mode {conditional_model} not implemented") | |
nn.init.zeros_(self.temporal_transformer.proj_out.weight) | |
nn.init.zeros_(self.temporal_transformer.proj_out.bias) | |
self.conditional_model = conditional_model | |
def forward(self, sample, conditioning, num_frames=None, num_conditional_frames=None): | |
""" | |
Forward pass of the ConditionalModel module. | |
Args: | |
sample (torch.Tensor): Input sample tensor. | |
conditioning (torch.Tensor): Conditioning tensor containing the enconding of the conditional frames. | |
num_frames (int): Number of frames in the sample. | |
num_conditional_frames (int): Number of conditional frames. | |
Returns: | |
sample (torch.Tensor): Transformed sample tensor. | |
""" | |
sample = rearrange(sample, "(B F) ... -> B F ...", F=num_frames) | |
batch_size = sample.shape[0] | |
conditioning = rearrange( | |
conditioning, "(B F) ... -> B F ...", B=batch_size) | |
assert conditioning.ndim == 5 | |
assert sample.ndim == 5 | |
conditioning = rearrange(conditioning, "B F C H W -> (B H W) F C") | |
sample = rearrange(sample, "B F C H W -> (B F) C H W") | |
sample = self.temporal_transformer( | |
sample, encoder_hidden_states=conditioning, num_frames=num_frames, num_conditional_frames=num_conditional_frames) | |
return sample | |
if __name__ == "__main__": | |
model = CrossAttention(input_channels=320, attention_head_dim=32) | |