medmac01 commited on
Commit
c554f06
·
verified ·
1 Parent(s): db76820
Files changed (1) hide show
  1. app.py +5 -28
app.py CHANGED
@@ -5,28 +5,6 @@ from PIL import Image
5
 
6
  from model import *
7
 
8
- # SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
9
-
10
- # Constants
11
- # base = "stabilityai/stable-diffusion-xl-base-1.0"
12
- # repo = "ByteDance/SDXL-Lightning"
13
- # checkpoints = {
14
- # "1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
15
- # "2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
16
- # "4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
17
- # "8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
18
- # }
19
- # loaded = None
20
-
21
-
22
- # Ensure model and scheduler are initialized in GPU-enabled function
23
- # if torch.cuda.is_available():
24
- # pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
25
-
26
-
27
- # Function
28
- # @spaces.GPU(enable_queue=True)
29
-
30
  def generate_image(prompt):
31
 
32
  return prompt_to_img(prompt)[0]
@@ -35,19 +13,18 @@ def generate_image(prompt):
35
 
36
  # Gradio Interface
37
  description = """
38
- This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
39
- As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
40
  """
41
 
42
  with gr.Blocks(css="style.css") as demo:
43
- gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>")
44
  gr.Markdown(description)
45
  with gr.Group():
46
  with gr.Row():
47
- prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
48
- ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
49
  submit = gr.Button(scale=1, variant='primary')
50
- img = gr.Image(label='SDXL-Lightning Generated Image')
51
 
52
  prompt.submit(fn=generate_image,
53
  inputs=[prompt],
 
5
 
6
  from model import *
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  def generate_image(prompt):
9
 
10
  return prompt_to_img(prompt)[0]
 
13
 
14
  # Gradio Interface
15
  description = """
16
+ This demo utilizes a specialized variant of the Stable Diffusion model designed for multilingual text-to-image synthesis. In response to the observed underperformance of existing models on languages beyond English, this project introduces the Multilingual Stable Diffusion, providing a more inclusive solution for diverse linguistic contexts.
17
+ Link to Github repo: https://github.com/NajlaaNawaii/Multilingual-Stable-Diffusion-Towards-more-Inclusive-Text-To-Image-Synthesis
18
  """
19
 
20
  with gr.Blocks(css="style.css") as demo:
21
+ gr.HTML("<h1><center>Multilingual Stable Diffusion 🧨</center></h1>")
22
  gr.Markdown(description)
23
  with gr.Group():
24
  with gr.Row():
25
+ prompt = gr.Textbox(label='Enter your prompt', scale=8)
 
26
  submit = gr.Button(scale=1, variant='primary')
27
+ img = gr.Image(label='Generated Image')
28
 
29
  prompt.submit(fn=generate_image,
30
  inputs=[prompt],