Upload 6 files
Browse files- model.py +16 -10
- requirements.txt +3 -1
model.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
-
import
|
2 |
-
from PIL import Image, ImageDraw
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
from IPython.display import HTML
|
6 |
from base64 import b64encode
|
7 |
|
8 |
import torch
|
@@ -14,8 +10,7 @@ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
|
14 |
#from transformers import CLIPTextModel, CLIPTokenizer
|
15 |
from tqdm.auto import tqdm
|
16 |
from huggingface_hub import notebook_login
|
17 |
-
|
18 |
-
import weights
|
19 |
|
20 |
device = 'cpu'
|
21 |
|
@@ -47,9 +42,6 @@ class MultilingualCLIP(transformers.PreTrainedModel):
|
|
47 |
return model, [], [], []
|
48 |
|
49 |
|
50 |
-
import torch
|
51 |
-
import torch.nn as nn
|
52 |
-
|
53 |
# Define the adaptation layer, 'checkpoint_9.pth'
|
54 |
class AdaptationLayer(nn.Module):
|
55 |
def __init__(self, input_dim, output_dim):
|
@@ -87,6 +79,20 @@ adapt_model.to(device)
|
|
87 |
state_dict = torch.load('weights/checkpoint_9.pth')
|
88 |
adapt_model.load_state_dict(state_dict)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
# 1. Load the autoencoder model which will be used to decode the latents into image space.
|
91 |
vae = AutoencoderKL.from_pretrained(
|
92 |
'CompVis/stable-diffusion-v1-4', subfolder='vae', use_auth_token=True)
|
|
|
1 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
2 |
from base64 import b64encode
|
3 |
|
4 |
import torch
|
|
|
10 |
#from transformers import CLIPTextModel, CLIPTokenizer
|
11 |
from tqdm.auto import tqdm
|
12 |
from huggingface_hub import notebook_login
|
13 |
+
import torch.nn as nn
|
|
|
14 |
|
15 |
device = 'cpu'
|
16 |
|
|
|
42 |
return model, [], [], []
|
43 |
|
44 |
|
|
|
|
|
|
|
45 |
# Define the adaptation layer, 'checkpoint_9.pth'
|
46 |
class AdaptationLayer(nn.Module):
|
47 |
def __init__(self, input_dim, output_dim):
|
|
|
79 |
state_dict = torch.load('weights/checkpoint_9.pth')
|
80 |
adapt_model.load_state_dict(state_dict)
|
81 |
|
82 |
+
from Multilingual_CLIP.multilingual_clip import pt_multilingual_clip
|
83 |
+
|
84 |
+
texts = [
|
85 |
+
'قطة تقرأ كتابا'
|
86 |
+
]
|
87 |
+
|
88 |
+
model_name = 'M-CLIP/LABSE-Vit-L-14'
|
89 |
+
|
90 |
+
# Load Model & Tokenizer
|
91 |
+
text_model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
|
92 |
+
text_model = text_model.to(device)
|
93 |
+
text_tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
94 |
+
|
95 |
+
embeddings= text_model.forward(texts, text_tokenizer, device )
|
96 |
# 1. Load the autoencoder model which will be used to decode the latents into image space.
|
97 |
vae = AutoencoderKL.from_pretrained(
|
98 |
'CompVis/stable-diffusion-v1-4', subfolder='vae', use_auth_token=True)
|
requirements.txt
CHANGED
@@ -2,4 +2,6 @@ transformers
|
|
2 |
diffusers
|
3 |
torch
|
4 |
accelerate
|
5 |
-
gradio
|
|
|
|
|
|
2 |
diffusers
|
3 |
torch
|
4 |
accelerate
|
5 |
+
gradio
|
6 |
+
opencv-python-headless
|
7 |
+
tqdm
|