Spaces:
Runtime error
Runtime error
Yew Chong
commited on
Commit
·
e17bf8a
1
Parent(s):
aa1d498
basic streamlit for chest pain
Browse files- streamlit/app8.py +370 -0
streamlit/app8.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import streamlit as st
|
3 |
+
import streamlit.components.v1 as components
|
4 |
+
import datetime
|
5 |
+
|
6 |
+
|
7 |
+
## Firestore ??
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import inspect
|
11 |
+
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
12 |
+
parentdir = os.path.dirname(currentdir)
|
13 |
+
sys.path.append(parentdir)
|
14 |
+
import db_firestore as db
|
15 |
+
|
16 |
+
|
17 |
+
## ----------------------------------------------------------------
|
18 |
+
## LLM Part
|
19 |
+
import openai
|
20 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
21 |
+
import tiktoken
|
22 |
+
from langchain.prompts.few_shot import FewShotPromptTemplate
|
23 |
+
from langchain.prompts.prompt import PromptTemplate
|
24 |
+
from operator import itemgetter
|
25 |
+
from langchain.schema import StrOutputParser
|
26 |
+
from langchain_core.output_parsers import StrOutputParser
|
27 |
+
from langchain_core.runnables import RunnablePassthrough
|
28 |
+
|
29 |
+
import langchain_community.embeddings.huggingface
|
30 |
+
# help(langchain_community.embeddings.huggingface)
|
31 |
+
from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings
|
32 |
+
from langchain_community.vectorstores import FAISS
|
33 |
+
|
34 |
+
from langchain.chains import LLMChain
|
35 |
+
from langchain.chains.conversation.memory import ConversationBufferMemory, ConversationBufferWindowMemory, ConversationSummaryMemory, ConversationSummaryBufferMemory
|
36 |
+
|
37 |
+
import os, dotenv
|
38 |
+
from dotenv import load_dotenv
|
39 |
+
load_dotenv()
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
if "openai_model" not in st.session_state:
|
44 |
+
st.session_state["openai_model"] = "gpt-3.5-turbo"
|
45 |
+
|
46 |
+
if "messages_1" not in st.session_state:
|
47 |
+
st.session_state.messages_1 = []
|
48 |
+
|
49 |
+
if "messages_2" not in st.session_state:
|
50 |
+
st.session_state.messages_2 = []
|
51 |
+
|
52 |
+
if "start_time" not in st.session_state:
|
53 |
+
st.session_state.start_time = None
|
54 |
+
|
55 |
+
if "active_chat" not in st.session_state:
|
56 |
+
st.session_state.active_chat = 1
|
57 |
+
|
58 |
+
model_name = "bge-large-en-v1.5"
|
59 |
+
model_kwargs = {"device": "cpu"}
|
60 |
+
# model_kwargs = {"device": "cuda"}
|
61 |
+
encode_kwargs = {"normalize_embeddings": True}
|
62 |
+
if "embeddings" not in st.session_state:
|
63 |
+
st.session_state.embeddings = HuggingFaceBgeEmbeddings(
|
64 |
+
# model_name=model_name,
|
65 |
+
model_kwargs = model_kwargs,
|
66 |
+
encode_kwargs = encode_kwargs)
|
67 |
+
embeddings = st.session_state.embeddings
|
68 |
+
if "llm" not in st.session_state:
|
69 |
+
st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
70 |
+
llm = st.session_state.llm
|
71 |
+
if "llm_gpt4" not in st.session_state:
|
72 |
+
st.session_state.llm_gpt4 = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
|
73 |
+
llm_gpt4 = st.session_state.llm_gpt4
|
74 |
+
|
75 |
+
## ------------------------------------------------------------------------------------------------
|
76 |
+
## Patient part
|
77 |
+
|
78 |
+
index_name = "indexes/ChestPainQA"
|
79 |
+
|
80 |
+
if "store" not in st.session_state:
|
81 |
+
st.session_state.store = db.get_store(index_name, embeddings=embeddings)
|
82 |
+
store = st.session_state.store
|
83 |
+
|
84 |
+
TEMPLATE = """You are a patient undergoing a medical check-up. You will be given the following:
|
85 |
+
1. A context to answer the doctor, for your possible symptoms.
|
86 |
+
2. A question about your current symptoms.
|
87 |
+
|
88 |
+
Your task is to answer the doctor's questions as simple as possible, acting like a patient.
|
89 |
+
Do not include other symptoms that are not included in the context, which provides your symptoms.
|
90 |
+
|
91 |
+
Answer the question to the point, without any elaboration if you're not prodded with it.
|
92 |
+
|
93 |
+
As you are a patient, you do not know any medical jargon or lingo. Do not include specific medical terms in your reply.
|
94 |
+
You only know colloquial words for medical terms.
|
95 |
+
For example, you should not reply with "dysarthria", but instead with "cannot speak properly".
|
96 |
+
For example, you should not reply with "syncope", but instead with "fainting".
|
97 |
+
|
98 |
+
Here is the context:
|
99 |
+
{context}
|
100 |
+
|
101 |
+
----------------------------------------------------------------
|
102 |
+
You are to reply the doctor's following question, with reference to the above context.
|
103 |
+
Question:
|
104 |
+
{question}
|
105 |
+
----------------------------------------------------------------
|
106 |
+
Remember, answer in a short and sweet manner, don't talk too much.
|
107 |
+
Your reply:
|
108 |
+
"""
|
109 |
+
|
110 |
+
prompt = PromptTemplate(
|
111 |
+
input_variables = ["question", "context"],
|
112 |
+
template = TEMPLATE
|
113 |
+
)
|
114 |
+
if "retriever" not in st.session_state:
|
115 |
+
st.session_state.retriever = store.as_retriever(search_type="similarity", search_kwargs={"k":2})
|
116 |
+
retriever = st.session_state.retriever
|
117 |
+
|
118 |
+
def format_docs(docs):
|
119 |
+
return "\n--------------------\n".join(doc.page_content for doc in docs)
|
120 |
+
|
121 |
+
|
122 |
+
if "memory" not in st.session_state:
|
123 |
+
st.session_state.memory = ConversationSummaryBufferMemory(llm=llm, memory_key="chat_history", input_key="question" )
|
124 |
+
memory = st.session_state.memory
|
125 |
+
|
126 |
+
|
127 |
+
if "chain" not in st.session_state:
|
128 |
+
st.session_state.chain = (
|
129 |
+
{
|
130 |
+
"context": retriever | format_docs,
|
131 |
+
"question": RunnablePassthrough()
|
132 |
+
} |
|
133 |
+
LLMChain(llm=llm, prompt=prompt, memory=memory, verbose=False)
|
134 |
+
)
|
135 |
+
chain = st.session_state.chain
|
136 |
+
|
137 |
+
sp_mapper = {"human":"student","ai":"patient"}
|
138 |
+
|
139 |
+
## ------------------------------------------------------------------------------------------------
|
140 |
+
## ------------------------------------------------------------------------------------------------
|
141 |
+
## Grader part
|
142 |
+
index_name = "indexes/ChestPainRubrics"
|
143 |
+
|
144 |
+
# store = FAISS.load_local(index_name, embeddings)
|
145 |
+
|
146 |
+
if "store2" not in st.session_state:
|
147 |
+
st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
|
148 |
+
store2 = st.session_state.store2
|
149 |
+
|
150 |
+
TEMPLATE2 = """You are a teacher for medical students. You are grading a medical student on their OSCE, the Object Structured Clinical Examination.
|
151 |
+
|
152 |
+
Your task is to provide an overall assessment of a student's diagnosis, based on the rubrics provided.
|
153 |
+
You will be provided with the following information:
|
154 |
+
1. The rubrics that the student should be judged based upon.
|
155 |
+
2. The conversation history between the medical student and the patient.
|
156 |
+
3. The final diagnosis that the student will make.
|
157 |
+
|
158 |
+
=================================================================
|
159 |
+
|
160 |
+
Your task is as follows:
|
161 |
+
1. Your grading should touch on every part of the rubrics, and grade the student holistically.
|
162 |
+
Finally, provide an overall grade for the student.
|
163 |
+
|
164 |
+
Some additional information that is useful to understand the rubrics:
|
165 |
+
- The rubrics are segmented, with each area separated by dashes, such as "----------"
|
166 |
+
- There will be multiple segments on History Taking. For each segment, the rubrics and corresponding grades will be provided below the required history taking.
|
167 |
+
- For History Taking, you are to grade the student based on the rubrics, by checking the chat history between the patients and the medical student.
|
168 |
+
- There is an additional segment on Presentation, differentials, and diagnosis. The
|
169 |
+
|
170 |
+
|
171 |
+
=================================================================
|
172 |
+
|
173 |
+
|
174 |
+
Here are the rubrics for grading the student:
|
175 |
+
<rubrics>
|
176 |
+
|
177 |
+
{context}
|
178 |
+
|
179 |
+
</rubrics>
|
180 |
+
|
181 |
+
=================================================================
|
182 |
+
You are to give a comprehensive judgement based on the student's diagnosis, with reference to the above rubrics.
|
183 |
+
|
184 |
+
Here is the chat history between the medical student and the patient:
|
185 |
+
|
186 |
+
<history>
|
187 |
+
|
188 |
+
{history}
|
189 |
+
|
190 |
+
</history>
|
191 |
+
=================================================================
|
192 |
+
|
193 |
+
|
194 |
+
Student's final diagnosis:
|
195 |
+
<diagnosis>
|
196 |
+
{question}
|
197 |
+
</diagnosis>
|
198 |
+
|
199 |
+
=================================================================
|
200 |
+
|
201 |
+
Your grade:
|
202 |
+
"""
|
203 |
+
|
204 |
+
prompt2 = PromptTemplate(
|
205 |
+
input_variables = ["question", "context", "history"],
|
206 |
+
template = TEMPLATE2
|
207 |
+
)
|
208 |
+
if "retriever2" not in st.session_state:
|
209 |
+
st.session_state.retriever2 = store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
|
210 |
+
retriever2 = st.session_state.retriever2
|
211 |
+
|
212 |
+
def format_docs(docs):
|
213 |
+
return "\n--------------------\n".join(doc.page_content for doc in docs)
|
214 |
+
|
215 |
+
|
216 |
+
fake_history = '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in memory.chat_memory.messages])
|
217 |
+
|
218 |
+
if "memory2" not in st.session_state:
|
219 |
+
st.session_state.memory2 = ConversationSummaryBufferMemory(llm=llm, memory_key="chat_history", input_key="question" )
|
220 |
+
memory2 = st.session_state.memory2
|
221 |
+
|
222 |
+
def x(_):
|
223 |
+
return fake_history
|
224 |
+
|
225 |
+
if "chain2" not in st.session_state:
|
226 |
+
st.session_state.chain2 = (
|
227 |
+
{
|
228 |
+
"context": retriever | format_docs,
|
229 |
+
"history": x,
|
230 |
+
"question": RunnablePassthrough(),
|
231 |
+
} |
|
232 |
+
|
233 |
+
LLMChain(llm=llm, prompt=prompt2, memory=memory, verbose=False)
|
234 |
+
)
|
235 |
+
chain2 = st.session_state.chain2
|
236 |
+
|
237 |
+
## ------------------------------------------------------------------------------------------------
|
238 |
+
## ------------------------------------------------------------------------------------------------
|
239 |
+
## Streamlit now
|
240 |
+
|
241 |
+
# from dotenv import load_dotenv
|
242 |
+
# import os
|
243 |
+
# load_dotenv()
|
244 |
+
# key = os.environ.get("OPENAI_API_KEY")
|
245 |
+
# client = OpenAI(api_key=key)
|
246 |
+
|
247 |
+
st.title("UAT for PatientLLM and GraderLLM")
|
248 |
+
st.title("Chest pain for now")
|
249 |
+
|
250 |
+
## Testing HTML
|
251 |
+
# html_string = """
|
252 |
+
# <canvas></canvas>
|
253 |
+
|
254 |
+
|
255 |
+
# <script>
|
256 |
+
# canvas = document.querySelector('canvas');
|
257 |
+
# canvas.width = 1024;
|
258 |
+
# canvas.height = 576;
|
259 |
+
# console.log(canvas);
|
260 |
+
|
261 |
+
# const c = canvas.getContext('2d');
|
262 |
+
# c.fillStyle = "green";
|
263 |
+
# c.fillRect(0,0,canvas.width,canvas.height);
|
264 |
+
|
265 |
+
# const img = new Image();
|
266 |
+
# img.src = "./tksfordumtrive.png";
|
267 |
+
# c.drawImage(img, 10, 10);
|
268 |
+
# </script>
|
269 |
+
|
270 |
+
# <style>
|
271 |
+
# body {
|
272 |
+
# margin: 0;
|
273 |
+
# }
|
274 |
+
# </style>
|
275 |
+
# """
|
276 |
+
# components.html(html_string,
|
277 |
+
# width=1280,
|
278 |
+
# height=640)
|
279 |
+
|
280 |
+
|
281 |
+
st.write("Timer has been removed, switch with this button")
|
282 |
+
|
283 |
+
st.write("Buggy button, please double click")
|
284 |
+
if st.button(f"Switch to {'PATIENT' if st.session_state.active_chat==2 else 'GRADER'}"):
|
285 |
+
st.session_state.active_chat = 3 - st.session_state.active_chat
|
286 |
+
|
287 |
+
st.write(st.session_state.active_chat)
|
288 |
+
|
289 |
+
# Create two columns for the two chat interfaces
|
290 |
+
col1, col2 = st.columns(2)
|
291 |
+
|
292 |
+
# First chat interface
|
293 |
+
with col1:
|
294 |
+
st.subheader("Student LLM")
|
295 |
+
for message in st.session_state.messages_1:
|
296 |
+
with st.chat_message(message["role"]):
|
297 |
+
st.markdown(message["content"])
|
298 |
+
|
299 |
+
# Second chat interface
|
300 |
+
with col2:
|
301 |
+
st.write("pls dun spam this, its tons of tokens cos chat history")
|
302 |
+
st.subheader("Grader LLM")
|
303 |
+
for message in st.session_state.messages_2:
|
304 |
+
with st.chat_message(message["role"]):
|
305 |
+
st.markdown(message["content"])
|
306 |
+
|
307 |
+
# Timer and Input
|
308 |
+
# time_left = None
|
309 |
+
# if st.session_state.start_time:
|
310 |
+
# time_elapsed = datetime.datetime.now() - st.session_state.start_time
|
311 |
+
# time_left = datetime.timedelta(minutes=10) - time_elapsed
|
312 |
+
# st.write(f"Time left: {time_left}")
|
313 |
+
|
314 |
+
# if time_left is None or time_left > datetime.timedelta(0):
|
315 |
+
# # Chat 1 is active
|
316 |
+
# prompt = st.text_input("Enter your message for Chat 1:")
|
317 |
+
# active_chat = 1
|
318 |
+
# messages = st.session_state.messages_1
|
319 |
+
# elif time_left and time_left <= datetime.timedelta(0):
|
320 |
+
# # Chat 2 is active
|
321 |
+
# prompt = st.text_input("Enter your message for Chat 2:")
|
322 |
+
# active_chat = 2
|
323 |
+
# messages = st.session_state.messages_2
|
324 |
+
|
325 |
+
if st.session_state.active_chat==1:
|
326 |
+
text_prompt = st.text_input("Enter your message for PATIENT")
|
327 |
+
messages = st.session_state.messages_1
|
328 |
+
else:
|
329 |
+
text_prompt = st.text_input("Enter your message for GRADER")
|
330 |
+
messages = st.session_state.messages_2
|
331 |
+
|
332 |
+
|
333 |
+
if text_prompt:
|
334 |
+
messages.append({"role": "user", "content": text_prompt})
|
335 |
+
|
336 |
+
with (col1 if st.session_state.active_chat == 1 else col2):
|
337 |
+
with st.chat_message("user"):
|
338 |
+
st.markdown(text_prompt)
|
339 |
+
|
340 |
+
with (col1 if st.session_state.active_chat == 1 else col2):
|
341 |
+
with st.chat_message("assistant"):
|
342 |
+
message_placeholder = st.empty()
|
343 |
+
if st.session_state.active_chat==1:
|
344 |
+
full_response = chain.invoke(text_prompt).get("text")
|
345 |
+
else:
|
346 |
+
full_response = chain2.invoke(text_prompt).get("text")
|
347 |
+
message_placeholder.markdown(full_response)
|
348 |
+
messages.append({"role": "assistant", "content": full_response})
|
349 |
+
|
350 |
+
|
351 |
+
# import streamlit as st
|
352 |
+
# import time
|
353 |
+
# def count_down(ts):
|
354 |
+
# with st.empty():
|
355 |
+
# while ts:
|
356 |
+
# mins, secs = divmod(ts, 60)
|
357 |
+
# time_now = '{:02d}:{:02d}'.format(mins, secs)
|
358 |
+
# st.header(f"{time_now}")
|
359 |
+
# time.sleep(1)
|
360 |
+
# ts -= 1
|
361 |
+
# st.write("Time Up!")
|
362 |
+
# def main():
|
363 |
+
# st.title("Pomodoro")
|
364 |
+
# time_minutes = st.number_input('Enter the time in minutes ', min_value=1, value=25)
|
365 |
+
# time_in_seconds = time_minutes * 60
|
366 |
+
# if st.button("START"):
|
367 |
+
# count_down(int(time_in_seconds))
|
368 |
+
# if __name__ == '__main__':
|
369 |
+
# main()
|
370 |
+
|