embeddings / app.py
scaraliu's picture
Update app.py
eae8754 verified
raw
history blame contribute delete
525 Bytes
import gradio as gr
from transformers import pipeline
# Load the model and tokenizer from Hugging Face and create a pipeline
model_pipeline = pipeline('feature-extraction', model='sentence-transformers/all-distilroberta-v1')
# Define a function that uses the model to make predictions
def predict(input_text):
features = model_pipeline(input_text)
return features
# Create a Gradio interface
interface = gr.Interface(fn=predict, inputs="text", outputs="json")
# Launch the Gradio app
interface.launch(share=True)