katielink commited on
Commit
2cb5259
·
1 Parent(s): 0bad889

Create dialogues.py

Browse files
Files changed (1) hide show
  1. dialogues.py +239 -0
dialogues.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import json
17
+ import os
18
+ from dataclasses import asdict, dataclass
19
+ from pathlib import Path
20
+ from typing import Any, Dict, List, Optional, Type, TypeVar, Union
21
+
22
+ from huggingface_hub import ModelHubMixin, hf_hub_download
23
+
24
+ # Generic variable that is either ModelHubMixin or a subclass thereof
25
+ T = TypeVar("T", bound="ModelHubMixin")
26
+
27
+ TEMPLATE_FILENAME = "dialogue_template.json"
28
+ IGNORE_INDEX = -100
29
+
30
+
31
+ @dataclass
32
+ class DialogueTemplate(ModelHubMixin):
33
+ """Converts all turns of a dialogue between a user and assistant to a standardized format.
34
+ Adapted from OpenAI's ChatML (https://github.com/openai/openai-python/blob/main/chatml.md) and Vicuna (https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py)
35
+ """
36
+
37
+ system: str
38
+ messages: List[Dict[str, str]] = None
39
+ system_token: str = "<|system|>"
40
+ user_token: str = "<|user|>"
41
+ assistant_token: str = "<|assistant|>"
42
+ end_token: str = "<|end|>"
43
+
44
+ def get_training_prompt(self) -> str:
45
+ prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
46
+ if self.messages is None:
47
+ raise ValueError("Dialogue template must have at least one message.")
48
+ for message in self.messages:
49
+ if message["role"] == "user":
50
+ prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
51
+ else:
52
+ prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
53
+ return prompt
54
+
55
+ def get_inference_prompt(self) -> str:
56
+ prompt = self.system_token + "\n" + self.system + self.end_token + "\n"
57
+ if self.messages is None:
58
+ raise ValueError("Dialogue template must have at least one message.")
59
+ for message in self.messages:
60
+ if message["role"] == "user":
61
+ prompt += self.user_token + "\n" + message["content"] + self.end_token + "\n"
62
+ else:
63
+ prompt += self.assistant_token + "\n" + message["content"] + self.end_token + "\n"
64
+ prompt += self.assistant_token + "\n"
65
+ return prompt
66
+
67
+ def get_dialogue(self):
68
+ """Helper function to format the messages as an easy-to-read dialogue."""
69
+ prompt = ""
70
+ if self.messages is None:
71
+ raise ValueError("Dialogue template must have at least one message.")
72
+ for message in self.messages:
73
+ if message["role"] == "user":
74
+ prompt += "\n\nHuman: " + message["content"]
75
+ else:
76
+ prompt += "\n\nAssistant: " + message["content"]
77
+ return prompt
78
+
79
+ def get_special_tokens(self) -> List[str]:
80
+ return [self.system_token, self.user_token, self.assistant_token, self.end_token]
81
+
82
+ def copy(self):
83
+ return DialogueTemplate(
84
+ system=self.system,
85
+ messages=self.messages,
86
+ system_token=self.system_token,
87
+ user_token=self.user_token,
88
+ assistant_token=self.assistant_token,
89
+ end_token=self.end_token,
90
+ )
91
+
92
+ def to_dict(self) -> Dict[str, Any]:
93
+ return {k: v for k, v in asdict(self).items()}
94
+
95
+ @classmethod
96
+ def from_dict(cls, data):
97
+ return DialogueTemplate(
98
+ system=data["system"] if "system" in data else "",
99
+ messages=data["messages"] if "messages" in data else None,
100
+ system_token=data["system_token"] if "system_token" in data else "<|system|>",
101
+ user_token=data["user_token"] if "user_token" in data else "<|user|>",
102
+ assistant_token=data["assistant_token"] if "assistant_token" in data else "<|assistant|>",
103
+ end_token=data["end_token"] if "end_token" in data else "<|end|>",
104
+ )
105
+
106
+ def _save_pretrained(self, save_directory: Union[str, Path]) -> None:
107
+ save_directory = Path(save_directory)
108
+ save_directory.mkdir(exist_ok=True)
109
+ with open(save_directory / "dialogue_template.json", "w") as f:
110
+ json.dump(self.to_dict(), f, indent=2)
111
+
112
+ @classmethod
113
+ def _from_pretrained(
114
+ cls: Type[T],
115
+ *,
116
+ model_id: str,
117
+ revision: Optional[str],
118
+ cache_dir: Optional[Union[str, Path]],
119
+ force_download: bool,
120
+ proxies: Optional[Dict],
121
+ resume_download: bool,
122
+ local_files_only: bool,
123
+ token: Optional[Union[str, bool]],
124
+ **model_kwargs,
125
+ ) -> T:
126
+ """Loads the dialogue template from a local directory or the Huggingface Hub.
127
+ Args:
128
+ model_id (`str`):
129
+ ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`).
130
+ revision (`str`, *optional*):
131
+ Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the
132
+ latest commit on `main` branch.
133
+ force_download (`bool`, *optional*, defaults to `False`):
134
+ Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
135
+ the existing cache.
136
+ resume_download (`bool`, *optional*, defaults to `False`):
137
+ Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
138
+ proxies (`Dict[str, str]`, *optional*):
139
+ A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128',
140
+ 'http://hostname': 'foo.bar:4012'}`).
141
+ token (`str` or `bool`, *optional*):
142
+ The token to use as HTTP bearer authorization for remote files. By default, it will use the token
143
+ cached when running `huggingface-cli login`.
144
+ cache_dir (`str`, `Path`, *optional*):
145
+ Path to the folder where cached files are stored.
146
+ local_files_only (`bool`, *optional*, defaults to `False`):
147
+ If `True`, avoid downloading the file and return the path to the local cached file if it exists.
148
+ model_kwargs:
149
+ Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method.
150
+ """
151
+ if os.path.isdir(model_id): # Can either be a local directory
152
+ print("Loading dialogue template from local directory")
153
+ template_file = os.path.join(model_id, TEMPLATE_FILENAME)
154
+ else: # Or a template on the Hub
155
+ template_file = hf_hub_download( # Download from the hub, passing same input args
156
+ repo_id=model_id,
157
+ filename=TEMPLATE_FILENAME,
158
+ revision=revision,
159
+ cache_dir=cache_dir,
160
+ force_download=force_download,
161
+ proxies=proxies,
162
+ resume_download=resume_download,
163
+ token=token,
164
+ local_files_only=local_files_only,
165
+ )
166
+
167
+ # Load template
168
+ with open(template_file, "r") as f:
169
+ data = json.load(f)
170
+ return cls.from_dict(data=data)
171
+
172
+
173
+ # A shortened version of the system message in Anthropic's HHH prompt: https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt
174
+ default_template = DialogueTemplate(
175
+ system="Below is a dialogue between a human user and an AI assistant. The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.",
176
+ )
177
+
178
+ # OpenAI and OpenAssistant train on few to no system messages.
179
+ # TODO: consider defining this as the `default` template
180
+ no_system_template = DialogueTemplate(
181
+ system="",
182
+ )
183
+
184
+ alpaca_template = DialogueTemplate(
185
+ system="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
186
+ user_token="### Instruction:",
187
+ assistant_token="### Response:",
188
+ )
189
+
190
+ SUPPORTED_DIALOGUE_TEMPLATES = {
191
+ "default": default_template,
192
+ "no_system": no_system_template,
193
+ "alpaca": alpaca_template,
194
+ }
195
+
196
+
197
+ def get_dialogue_template(template: str) -> DialogueTemplate:
198
+ if template not in SUPPORTED_DIALOGUE_TEMPLATES.keys():
199
+ raise ValueError(f"Template {template} is not supported!")
200
+ return SUPPORTED_DIALOGUE_TEMPLATES[template].copy()
201
+
202
+
203
+ def prepare_dialogue(example, dialogue_template, is_train=True):
204
+ """Format example to single- or multi-turn dialogue."""
205
+ # TODO: make this simpler by just ensuring every dataset has a messages column
206
+ if "messages" in example.keys() and example["messages"] is not None:
207
+ dialogue_template.messages = example["messages"]
208
+ elif all(k in example.keys() for k in ("prompt", "completion")):
209
+ # Construct single-turn dialogue from prompt and completion
210
+ dialogue_template.messages = [
211
+ {"role": "user", "content": example["prompt"]},
212
+ {"role": "assistant", "content": example["completion"]},
213
+ ]
214
+ elif "prompt" in example.keys():
215
+ # Construct single-turn dialogue from prompt (inference only)
216
+ dialogue_template.messages = [
217
+ {"role": "user", "content": example["prompt"]},
218
+ ]
219
+ else:
220
+ raise ValueError(
221
+ f"Could not format example as dialogue! Require either `messages` or `[prompt, completion]` or `[prompt]` keys but found {list(example.keys())}"
222
+ )
223
+ if is_train:
224
+ example["text"] = dialogue_template.get_training_prompt()
225
+ else:
226
+ example["text"] = dialogue_template.get_inference_prompt()
227
+ return example
228
+
229
+
230
+ def mask_user_labels(tokenizer, dialogue_template, labels):
231
+ """Masks the user turns of a dialogue from the loss"""
232
+ user_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.user_token)
233
+ assistant_token_id = tokenizer.convert_tokens_to_ids(dialogue_template.assistant_token)
234
+ for idx, label_id in enumerate(labels):
235
+ if label_id == user_token_id:
236
+ current_idx = idx
237
+ while labels[current_idx] != assistant_token_id and current_idx < len(labels):
238
+ labels[current_idx] = IGNORE_INDEX
239
+ current_idx += 1