mdsalem17 commited on
Commit
bd5e432
1 Parent(s): e338374

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -0
app.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ import os
4
+ from threading import Thread
5
+ from typing import Iterator
6
+
7
+ import gradio as gr
8
+ import spaces
9
+ import torch
10
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
11
+
12
+ DESCRIPTION = "# Zephyr-7B beta"
13
+
14
+ MAX_MAX_NEW_TOKENS = 2048
15
+ DEFAULT_MAX_NEW_TOKENS = 1024
16
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
17
+
18
+ model_id = "HuggingFaceH4/zephyr-7b-beta"
19
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
20
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
21
+
22
+
23
+ @spaces.GPU
24
+ def generate(
25
+ message: str,
26
+ chat_history: list[tuple[str, str]],
27
+ system_prompt: str = "",
28
+ max_new_tokens: int = 1024,
29
+ temperature: float = 0.7,
30
+ top_p: float = 0.95,
31
+ top_k: int = 50,
32
+ repetition_penalty: float = 1.0,
33
+ ) -> Iterator[str]:
34
+ conversation = []
35
+ if system_prompt:
36
+ conversation.append({"role": "system", "content": system_prompt})
37
+ for user, assistant in chat_history:
38
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
39
+ conversation.append({"role": "user", "content": message})
40
+
41
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
42
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
43
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
44
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
45
+ input_ids = input_ids.to(model.device)
46
+
47
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
48
+ generate_kwargs = dict(
49
+ {"input_ids": input_ids},
50
+ streamer=streamer,
51
+ max_new_tokens=max_new_tokens,
52
+ do_sample=True,
53
+ top_p=top_p,
54
+ top_k=top_k,
55
+ temperature=temperature,
56
+ num_beams=1,
57
+ repetition_penalty=repetition_penalty,
58
+ )
59
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
60
+ t.start()
61
+
62
+ outputs = []
63
+ for text in streamer:
64
+ outputs.append(text)
65
+ yield "".join(outputs)
66
+
67
+
68
+ chat_interface = gr.ChatInterface(
69
+ fn=generate,
70
+ additional_inputs=[
71
+ gr.Textbox(
72
+ label="System prompt",
73
+ lines=6,
74
+ placeholder="You are a friendly chatbot who always responds in the style of a pirate.",
75
+ ),
76
+ gr.Slider(
77
+ label="Max new tokens",
78
+ minimum=1,
79
+ maximum=MAX_MAX_NEW_TOKENS,
80
+ step=1,
81
+ value=DEFAULT_MAX_NEW_TOKENS,
82
+ ),
83
+ gr.Slider(
84
+ label="Temperature",
85
+ minimum=0.1,
86
+ maximum=4.0,
87
+ step=0.1,
88
+ value=0.7,
89
+ ),
90
+ gr.Slider(
91
+ label="Top-p (nucleus sampling)",
92
+ minimum=0.05,
93
+ maximum=1.0,
94
+ step=0.05,
95
+ value=0.95,
96
+ ),
97
+ gr.Slider(
98
+ label="Top-k",
99
+ minimum=1,
100
+ maximum=1000,
101
+ step=1,
102
+ value=50,
103
+ ),
104
+ gr.Slider(
105
+ label="Repetition penalty",
106
+ minimum=1.0,
107
+ maximum=2.0,
108
+ step=0.05,
109
+ value=1.0,
110
+ ),
111
+ ],
112
+ stop_btn=None,
113
+ examples=[
114
+ ["Hello there! How are you doing?"],
115
+ ["Can you explain briefly to me what is the Python programming language?"],
116
+ ["Explain the plot of Cinderella in a sentence."],
117
+ ["How many hours does it take a man to eat a Helicopter?"],
118
+ ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
119
+ ],
120
+ )
121
+
122
+ with gr.Blocks(css="style.css") as demo:
123
+ gr.Markdown(DESCRIPTION)
124
+ gr.DuplicateButton(
125
+ value="Duplicate Space for private use",
126
+ elem_id="duplicate-button",
127
+ visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
128
+ )
129
+ chat_interface.render()
130
+
131
+ if __name__ == "__main__":
132
+ demo.queue(max_size=20).launch()