Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,404 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""Lab2222.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1OUGOeTdmMbccW_st3Ao8nHDR5wm_VUNg
|
8 |
-
"""
|
9 |
-
|
10 |
-
from google.colab import drive
|
11 |
-
|
12 |
-
drive.mount("/content/ML_Course")
|
13 |
-
|
14 |
-
cd /content/ML_Course/MyDrive/ML_Course
|
15 |
-
|
16 |
-
import pandas as pd
|
17 |
-
housing = pd.read_csv("housing.csv")
|
18 |
-
housing.head(n = 5)
|
19 |
-
|
20 |
-
housing.columns
|
21 |
-
|
22 |
-
housing.describe()
|
23 |
-
|
24 |
-
housing.info()
|
25 |
-
|
26 |
-
# Commented out IPython magic to ensure Python compatibility.
|
27 |
-
# %matplotlib inline
|
28 |
-
import matplotlib.pyplot as plt
|
29 |
-
housing.hist(bins=50, figsize=(20,15))
|
30 |
-
plt.show()
|
31 |
-
|
32 |
-
# to make this notebook's output identical at every run
|
33 |
-
import numpy as np
|
34 |
-
np.random.seed(10)
|
35 |
-
|
36 |
-
# For illustration only. Sklearn has train_test_split()
|
37 |
-
def split_train_test(data, test_ratio):
|
38 |
-
shuffled_indices = np.random.permutation(len(data))
|
39 |
-
test_set_size = int(len(data) * test_ratio)
|
40 |
-
test_indices = shuffled_indices[:test_set_size]
|
41 |
-
train_indices = shuffled_indices[test_set_size:]
|
42 |
-
return data.iloc[train_indices], data.iloc[test_indices]
|
43 |
-
|
44 |
-
# run the function to get the train & test set
|
45 |
-
train_set, test_set = split_train_test(housing, 0.2)
|
46 |
-
|
47 |
-
train_set.info()
|
48 |
-
|
49 |
-
test_set.info()
|
50 |
-
|
51 |
-
from sklearn.model_selection import train_test_split
|
52 |
-
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
|
53 |
-
|
54 |
-
train_set.info()
|
55 |
-
|
56 |
-
test_set.info()
|
57 |
-
|
58 |
-
test_set.to_csv('blind_test.csv', index = False)
|
59 |
-
|
60 |
-
train_set.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
|
61 |
-
s=train_set["population"]/100, label="population", figsize=(10,7),
|
62 |
-
c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
|
63 |
-
sharex=False)
|
64 |
-
plt.legend()
|
65 |
-
plt.show()
|
66 |
-
|
67 |
-
train_set.info()
|
68 |
-
|
69 |
-
train_set[train_set.isna().any(axis=1)]
|
70 |
-
|
71 |
-
train_set_clean = train_set.dropna(subset=["total_bedrooms"])
|
72 |
-
train_set_clean
|
73 |
-
|
74 |
-
train_set_clean.info()
|
75 |
-
|
76 |
-
train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
|
77 |
-
train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
|
78 |
-
train_features.info()
|
79 |
-
|
80 |
-
train_features.head()
|
81 |
-
|
82 |
-
train_features.columns
|
83 |
-
|
84 |
-
train_features.info()
|
85 |
-
|
86 |
-
train_features.describe()
|
87 |
-
|
88 |
-
train_labels
|
89 |
-
|
90 |
-
train_features.hist(bins=50, figsize=(12,9))
|
91 |
-
|
92 |
-
train_features.describe()
|
93 |
-
|
94 |
-
from sklearn.preprocessing import MinMaxScaler
|
95 |
-
scaler = MinMaxScaler() ## define the transformer
|
96 |
-
scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
|
97 |
-
|
98 |
-
print("Min of each column: ",scaler.data_min_)
|
99 |
-
print("Max of each column: ",scaler.data_max_)
|
100 |
-
|
101 |
-
train_features.describe()
|
102 |
-
|
103 |
-
train_features_normalized = scaler.transform(train_features)
|
104 |
-
train_features_normalized
|
105 |
-
|
106 |
-
pd.DataFrame(train_features_normalized).hist(bins=50, figsize=(12,9))
|
107 |
-
plt.show()
|
108 |
-
|
109 |
-
## 1. split data to get train and test set
|
110 |
-
from sklearn.model_selection import train_test_split
|
111 |
-
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
|
112 |
-
|
113 |
-
## 2. clean the missing values
|
114 |
-
train_set_clean = train_set.dropna(subset=["total_bedrooms"])
|
115 |
-
train_set_clean
|
116 |
-
|
117 |
-
## 2. derive training features and training labels
|
118 |
-
train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
|
119 |
-
train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
|
120 |
-
|
121 |
-
|
122 |
-
## 4. scale the numeric features in training set
|
123 |
-
from sklearn.preprocessing import MinMaxScaler
|
124 |
-
scaler = MinMaxScaler() ## define the transformer
|
125 |
-
scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
|
126 |
-
|
127 |
-
train_features_normalized = scaler.transform(train_features)
|
128 |
-
train_features_normalized
|
129 |
-
|
130 |
-
from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
|
131 |
-
lin_reg = LinearRegression() ## Initialize the class
|
132 |
-
lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning
|
133 |
-
# feed the training data X, and label Y for supervised learning
|
134 |
-
|
135 |
-
training_predictions = lin_reg.predict(train_features_normalized)
|
136 |
-
training_predictions.shape
|
137 |
-
|
138 |
-
train_labels
|
139 |
-
|
140 |
-
## plot scatter plot
|
141 |
-
import matplotlib.pyplot as plt
|
142 |
-
plt.scatter(training_predictions, train_labels )
|
143 |
-
plt.xlabel('training_predictions', fontsize=15,color="red")
|
144 |
-
plt.ylabel('train_label', fontsize=15,color="green")
|
145 |
-
plt.title('Scatter plot for training_predictions and train_label', fontsize=15)
|
146 |
-
plt.xlim(0,np.max(training_predictions)) # remove the predictions that have negative prices
|
147 |
-
plt.show()
|
148 |
-
|
149 |
-
import numpy as np
|
150 |
-
np.corrcoef(training_predictions, train_labels)
|
151 |
-
|
152 |
-
import pandas as pd
|
153 |
-
prediction_summary = pd.DataFrame({'predicted_label':training_predictions, 'actual_label':train_labels})
|
154 |
-
prediction_summary
|
155 |
-
|
156 |
-
prediction_summary['error'] = prediction_summary['actual_label'] - prediction_summary['predicted_label']
|
157 |
-
prediction_summary
|
158 |
-
|
159 |
-
from sklearn.metrics import mean_squared_error
|
160 |
-
lin_mse = mean_squared_error(train_labels, training_predictions)
|
161 |
-
lin_rmse = np.sqrt(lin_mse)
|
162 |
-
lin_rmse
|
163 |
-
|
164 |
-
## Step 1: training the data using decision tree algorithm
|
165 |
-
from sklearn.tree import DecisionTreeRegressor ## import the DecisionTree Function
|
166 |
-
tree_reg = DecisionTreeRegressor(random_state=10) ## Initialize the class
|
167 |
-
tree_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning
|
168 |
-
|
169 |
-
### Step 2: make a prediction using tree model
|
170 |
-
training_predictions_trees = tree_reg.predict(train_features_normalized)
|
171 |
-
training_predictions_trees
|
172 |
-
|
173 |
-
## Step 3: visualize the scatter plot between predictions and actual labels
|
174 |
-
import matplotlib.pyplot as plt
|
175 |
-
plt.scatter(training_predictions_trees, train_labels )
|
176 |
-
plt.xlabel('training_predictions_trees', fontsize=15,color="red")
|
177 |
-
plt.ylabel('train_label', fontsize=15,color="green")
|
178 |
-
plt.title('Scatter plot for training_predictions_trees and train_label', fontsize=15)
|
179 |
-
plt.xlim(0,np.max(training_predictions_trees)) # remove the predictions that have negative prices
|
180 |
-
plt.show()
|
181 |
-
|
182 |
-
from sklearn.metrics import mean_squared_error
|
183 |
-
tree_mse = mean_squared_error(train_labels, training_predictions_trees)
|
184 |
-
tree_rmse = np.sqrt(tree_mse)
|
185 |
-
tree_rmse
|
186 |
-
|
187 |
-
## 1. clean the missing values in test set
|
188 |
-
test_set_clean = test_set.dropna(subset=["total_bedrooms"])
|
189 |
-
test_set_clean
|
190 |
-
|
191 |
-
## 2. derive test features and test labels. In this case, test labels are only used for evaluation
|
192 |
-
test_labels = test_set_clean["median_house_value"].copy() # get labels for output label Y
|
193 |
-
test_features = test_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
|
194 |
-
|
195 |
-
|
196 |
-
## 4. scale the numeric features in test set.
|
197 |
-
## important note: do not apply fit function on the test set, using same scalar from training set
|
198 |
-
test_features_normalized = scaler.transform(test_features)
|
199 |
-
test_features_normalized
|
200 |
-
|
201 |
-
### Step 5: make a prediction using tree model
|
202 |
-
test_predictions_trees = tree_reg.predict(test_features_normalized)
|
203 |
-
test_predictions_trees
|
204 |
-
|
205 |
-
from sklearn.metrics import mean_squared_error
|
206 |
-
test_tree_mse = mean_squared_error(test_labels, test_predictions_trees)
|
207 |
-
test_tree_rmse = np.sqrt(test_tree_mse)
|
208 |
-
test_tree_rmse
|
209 |
-
|
210 |
-
# Step 1: install Gradio
|
211 |
-
!pip install --quiet gradio
|
212 |
-
|
213 |
-
# Step 2: import library
|
214 |
-
import gradio as gr
|
215 |
-
print(gr.__version__)
|
216 |
-
|
217 |
-
# Step 3.1: Define a simple "Hello World" function
|
218 |
-
# requirement: input is text, output is text
|
219 |
-
def greet(name):
|
220 |
-
return "Hello " + name + "!!"
|
221 |
-
|
222 |
-
# Step 3.2: Define the input component (text style) and output component (text style) to create a simple GUI
|
223 |
-
import gradio as gr
|
224 |
-
input_module = gr.inputs.Textbox(label = "Input Text")
|
225 |
-
output_module = gr.outputs.Textbox(label = "Output Text")
|
226 |
-
|
227 |
-
# Step 3.3: Put all three component together into the gradio's interface function
|
228 |
-
gr.Interface(fn=greet, inputs=input_module, outputs=output_module).launch()
|
229 |
-
|
230 |
-
# Step 5.1: Define a simple "image-to-text" function
|
231 |
-
# requirement: input is text, output is text
|
232 |
-
|
233 |
-
def caption(image):
|
234 |
-
return "Image is processed!!"
|
235 |
-
|
236 |
-
# Step 5.2: Define the input component (image style) and output component (text style) to create a simple GUI
|
237 |
-
import gradio as gr
|
238 |
-
input_module = gr.inputs.Image(label = "Input Image")
|
239 |
-
|
240 |
-
output_module = gr.outputs.Textbox(label = "Output Text")
|
241 |
-
|
242 |
-
# Step 5.3: Put all three component together into the gradio's interface function
|
243 |
-
gr.Interface(fn=caption, inputs=input_module, outputs=output_module).launch()
|
244 |
-
|
245 |
-
# Step 6.1: Define different input components
|
246 |
-
import gradio as gr
|
247 |
-
|
248 |
-
# a. define text data type
|
249 |
-
input_module1 = gr.inputs.Textbox(label = "Input Text")
|
250 |
-
|
251 |
-
# b. define image data type
|
252 |
-
input_module2 = gr.inputs.Image(label = "Input Image")
|
253 |
-
|
254 |
-
# c. define Number data type
|
255 |
-
input_module3 = gr.inputs.Number(label = "Input Number")
|
256 |
-
|
257 |
-
# d. define Slider data type
|
258 |
-
input_module4 = gr.inputs.Slider(1, 100, step=5, label = "Input Slider")
|
259 |
-
|
260 |
-
# e. define Checkbox data type
|
261 |
-
input_module5 = gr.inputs.Checkbox(label = "Does it work?")
|
262 |
-
|
263 |
-
# f. define Radio data type
|
264 |
-
input_module6 = gr.inputs.Radio(choices=["park", "zoo", "road"], label = "Input Radio")
|
265 |
-
|
266 |
-
# g. define Dropdown data type
|
267 |
-
input_module7 = gr.inputs.Dropdown(choices=["park", "zoo", "road"], label = "Input Dropdown")
|
268 |
-
|
269 |
-
# Step 6.2: Define different output components
|
270 |
-
# a. define text data type
|
271 |
-
output_module1 = gr.outputs.Textbox(label = "Output Text")
|
272 |
-
|
273 |
-
# b. define image data type
|
274 |
-
output_module2 = gr.outputs.Image(label = "Output Image")
|
275 |
-
|
276 |
-
# you can define more output components
|
277 |
-
|
278 |
-
# Step 6.3: Define a new function that accommodates the input modules.
|
279 |
-
def multi_inputs(input1, input2, input3, input4, input5, input6, input7 ):
|
280 |
-
import numpy as np
|
281 |
-
## processing inputs
|
282 |
-
|
283 |
-
## return outputs
|
284 |
-
output1 = "Processing inputs and return outputs" # text output example
|
285 |
-
output2 = np.random.rand(6,6) # image-like array output example
|
286 |
-
return output1,output2
|
287 |
-
|
288 |
-
# Step 6.4: Put all three component together into the gradio's interface function
|
289 |
-
gr.Interface(fn=multi_inputs,
|
290 |
-
inputs=[input_module1, input_module2, input_module3,
|
291 |
-
input_module4, input_module5, input_module6,
|
292 |
-
input_module7],
|
293 |
-
outputs=[output_module1, output_module2]
|
294 |
-
).launch()
|
295 |
-
|
296 |
-
# Step 6.1: Define different input components
|
297 |
-
import gradio as gr
|
298 |
-
|
299 |
-
# a. define text data type
|
300 |
-
input_module1 = gr.inputs.Slider(-124.35,-114.35, step =0.5,label = "Longitude")
|
301 |
-
|
302 |
-
# b. define image data type
|
303 |
-
input_module2 = gr.inputs.Slider(32,41, step =0.5,label = "Latitude")
|
304 |
-
|
305 |
-
# c. define Number data type
|
306 |
-
input_module3 = gr.inputs.Slider(1,52, step = 1,label = "Housing_median_age(Year)")
|
307 |
-
|
308 |
-
# d. define Slider data type
|
309 |
-
input_module4 = gr.inputs.Slider(1, 40000, step=1, label = "Total_rooms")
|
310 |
-
|
311 |
-
# e. define Checkbox data type
|
312 |
-
input_module5 = gr.inputs.Slider(1, 6441,label = "Total_bedrooms")
|
313 |
-
|
314 |
-
# f. define Radio data type
|
315 |
-
input_module6 = gr.inputs.Slider(1,6441,step = 1,label = "Population")
|
316 |
-
|
317 |
-
# g. define Dropdown data type
|
318 |
-
input_module7 = gr.inputs.Slider(1,6081,step = 1,label = "Households")
|
319 |
-
|
320 |
-
input_module8 = gr.inputs.Slider(0,15,step = 1,label = "Median_income")
|
321 |
-
|
322 |
-
# Step 6.2: Define different output components
|
323 |
-
# a. define text data type
|
324 |
-
output_module1 = gr.outputs.Textbox(label = "Predicted Housing Prices")
|
325 |
-
|
326 |
-
# b. define image data type
|
327 |
-
output_module2 = gr.outputs.Image(label = "Output Image")
|
328 |
-
|
329 |
-
# you can define more output components
|
330 |
-
|
331 |
-
train_set.columns
|
332 |
-
|
333 |
-
#save machinel earning model to local drive
|
334 |
-
import pickle
|
335 |
-
#save
|
336 |
-
with open('tree_reg.pkl','wb') as f:
|
337 |
-
pickle.dump(tree_reg,f)
|
338 |
-
|
339 |
-
ls
|
340 |
-
|
341 |
-
# Step 6.3: Define a new function that accommodates the input modules.
|
342 |
-
def machine_learning_model(input1, input2, input3, input4, input5, input6, input7, input8):
|
343 |
-
print('Start ML process')
|
344 |
-
import numpy as np
|
345 |
-
import pandas as pd
|
346 |
-
print(input1, input2, input3, input4, input5, input6, input7, input8)
|
347 |
-
#1. process the user submission
|
348 |
-
new_feature = np.array([[input1, input2, input3, input4, input5, input6, input7, input8]])
|
349 |
-
print(new_feature)
|
350 |
-
|
351 |
-
test_set = pd.DataFrame(new_feature, columns = ['longitude', 'latitude', 'housing_median_age', 'total_rooms',
|
352 |
-
'total_bedrooms', 'population', 'households', 'median_income'])
|
353 |
-
|
354 |
-
## 1. clean the missing values in test set
|
355 |
-
test_set_clean = test_set.dropna(subset=["total_bedrooms"])
|
356 |
-
test_set_clean
|
357 |
-
|
358 |
-
## 2. derive test features and test labels. In this case, test labels are only used for evaluation
|
359 |
-
#test_labels = test_set_clean["median_house_value"].copy() # get labels for output label Y
|
360 |
-
#test_features = test_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
|
361 |
-
|
362 |
-
test_features_normalized = scaler.transform(test_set_clean)
|
363 |
-
print("test_features_normalized: ", test_features_normalized)
|
364 |
-
|
365 |
-
with open('tree_reg.pkl','rb') as f:
|
366 |
-
tree_reg = pickle.load(f)
|
367 |
-
print("Start processing")
|
368 |
-
|
369 |
-
output1 = 'This is the output'
|
370 |
-
output2 = np.random.rand(28,28)
|
371 |
-
|
372 |
-
#2. follow the data preprocessing steps as we have done in the test data
|
373 |
-
#2.2 Check missing values in total_bedrroms
|
374 |
-
# 2.2 feature normalization
|
375 |
-
|
376 |
-
#3. load pre trained machine learning
|
377 |
-
|
378 |
-
|
379 |
-
#4 apply loaded modeld
|
380 |
-
test_predictions_trees = tree_reg.predict(test_features_normalized)
|
381 |
-
print("Predicition is :",test_predictions_trees)
|
382 |
-
|
383 |
-
import matplotlib.pyplot as plt
|
384 |
-
|
385 |
-
train_set.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
|
386 |
-
s=train_set["population"]/100, label="population", figsize=(10,7),
|
387 |
-
c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
|
388 |
-
sharex=False)
|
389 |
-
plt.legend()
|
390 |
-
|
391 |
-
#plt.show()
|
392 |
-
plt.xlim(-124.35,-114.35)
|
393 |
-
plt.ylim(32,41)
|
394 |
-
plt.plot([input1],[input2],marker = "X",markersize = 20, markeredgecolor="yellow", markerfacecolor="black")
|
395 |
-
plt.savefig('test.png')
|
396 |
-
#5 send back the prediciton
|
397 |
-
return test_predictions_trees,'test.png'
|
398 |
-
|
399 |
-
gr.Interface(fn=machine_learning_model,
|
400 |
-
inputs=[input_module1, input_module2, input_module3,
|
401 |
-
input_module4, input_module5, input_module6,
|
402 |
-
input_module7, input_module8],
|
403 |
-
outputs=[output_module1, output_module2]
|
404 |
-
).launch(debug = True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|