mutukrish commited on
Commit
693a64e
·
0 Parent(s):

Duplicate from mutukrish/eng-to-mql

Browse files
Files changed (4) hide show
  1. .gitattributes +34 -0
  2. README.md +14 -0
  3. app.py +197 -0
  4. requirements.txt +4 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Eng To Mql
3
+ emoji: 🏃
4
+ colorFrom: yellow
5
+ colorTo: indigo
6
+ sdk: streamlit
7
+ sdk_version: 1.17.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ duplicated_from: mutukrish/eng-to-mql
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import openai
4
+ from pymongo import MongoClient
5
+ from datetime import datetime
6
+ import random
7
+
8
+ # Schema Versions
9
+ # 1. First version, using text-davinci-003 model
10
+ # 2. Switched to gpt-3.5-turbo model
11
+ # 3. Logging the model as well
12
+
13
+
14
+ # you need to set your OpenAI API key as environment variable
15
+ openai.api_key = st.secrets["API_KEY"]
16
+
17
+ MOVIES_EXAMPLE_DOC = """{
18
+ _id: ObjectId("573a1390f29313caabcd4135"),
19
+ genres: [ 'Short' ],
20
+ runtime: 1,
21
+ cast: [ 'Charles Kayser', 'John Ott' ],
22
+ num_mflix_comments: 0,
23
+ title: 'Blacksmith Scene',
24
+ countries: [ 'USA' ],
25
+ released: ISODate("1893-05-09T00:00:00.000Z"),
26
+ directors: [ 'William K.L. Dickson' ],
27
+ rated: 'UNRATED',
28
+ awards: { wins: 1, nominations: 0, text: '1 win.' },
29
+ lastupdated: '2015-08-26 00:03:50.133000000',
30
+ year: 1893,
31
+ imdb: { rating: 6.2, votes: 1189, id: 5 },
32
+ type: 'movie',
33
+ tomatoes: {
34
+ viewer: { rating: 3, numReviews: 184, meter: 32 },
35
+ lastUpdated: ISODate("2015-06-28T18:34:09.000Z")
36
+ }
37
+ }"""
38
+
39
+ MOVIES_EXAMPLE_QUESTIONS = [
40
+ (
41
+ "How many fantasy or horror movies from the USA with an imdb rating "
42
+ "greater than 6.0 are there in this dataset?"
43
+ ),
44
+ (
45
+ "Which movies were released on a Monday and have a higher tomato rating "
46
+ "than IMDB rating? Keep in mind that IMDB goes from 1-10 and tomatoes "
47
+ "only from 1-5, so you need to normalise the ratings to do a fair comparison."
48
+ ),
49
+ "What movies should I watch to learn more about Japanse culture?",
50
+ (
51
+ "How many movies were released in each decade? Write decade as a string, e.g. "
52
+ "'1920-1929'. Sort ascending by decade."
53
+ ),
54
+ (
55
+ "Find movies that are suitable to watch with my kids, both by genre and their "
56
+ "parental guidance rating. Just recommend good movies."
57
+ ),
58
+ ]
59
+
60
+ BASE_CHAT_MESSAGES = [
61
+ {
62
+ "role": "system",
63
+ "content": "You are an expert English to MongoDB aggregation pipeline translation system."
64
+ "You will accept an example document from a collection and an English question, and return an aggregation "
65
+ "pipeline that can answer the question. Do not explain the query or add any additional comments, only "
66
+ "return a single code block with the aggregation pipeline without the aggregate command.",
67
+ }
68
+ ]
69
+
70
+ MODEL_NAME = "gpt-3.5-turbo"
71
+
72
+
73
+ @st.cache
74
+ def ask_model(doc, question):
75
+ """This is the call to the OpenAI API. It creates a prompt from the document
76
+ and question and returns the endpoint's response."""
77
+
78
+ messages = BASE_CHAT_MESSAGES + [
79
+ {
80
+ "role": "user",
81
+ "content": f"Example document: {doc.strip()}\n\nQuestion: {question.strip()}\n\n",
82
+ }
83
+ ]
84
+
85
+ return openai.ChatCompletion.create(
86
+ model=MODEL_NAME,
87
+ messages=messages,
88
+ temperature=0,
89
+ max_tokens=1000,
90
+ top_p=1.0,
91
+ )
92
+
93
+
94
+ def extract_pipeline(response):
95
+ content = response["choices"][0]["message"]["content"].strip("\n `")
96
+ return content
97
+
98
+
99
+ st.set_page_config(layout="wide")
100
+
101
+ # initialise session state
102
+ if not "response" in st.session_state:
103
+ st.session_state.response = None
104
+ if not "_id" in st.session_state:
105
+ st.session_state._id = None
106
+ if not "feedback" in st.session_state:
107
+ st.session_state.feedback = False
108
+ if not "default_question" in st.session_state:
109
+ st.session_state.default_question = random.choice(MOVIES_EXAMPLE_QUESTIONS)
110
+
111
+ # DB access
112
+
113
+
114
+ st.markdown(
115
+ """# English to MQL Demo
116
+
117
+ This demo app uses OpenAI's GPT-4 (gpt-4) model to generate a MongoDB
118
+ aggregation pipeline from an English question and example document.
119
+
120
+ 🚧 The app is experimental and may return incorrect results. Do not enter any sensitive information! 🚧
121
+ """
122
+ )
123
+
124
+
125
+ # two-column layout
126
+ col_left, col_right = st.columns(2, gap="large")
127
+
128
+ with col_left:
129
+ st.markdown("### Example Document and Question")
130
+ # wrap textareas in form
131
+ with st.form("text_inputs"):
132
+ doc = st.text_area(
133
+ "Enter example document from collection, e.g. db.collection.findOne()",
134
+ value=MOVIES_EXAMPLE_DOC,
135
+ height=300,
136
+ )
137
+
138
+ # question textarea
139
+ question = st.text_area(
140
+ label="Ask question in English",
141
+ value=st.session_state.default_question,
142
+ )
143
+
144
+ # submit button
145
+ submitted = st.form_submit_button("Translate", type="primary")
146
+ if submitted:
147
+ st.session_state._id = None
148
+ st.session_state.feedback = False
149
+ st.session_state.response = ask_model(doc, question)
150
+
151
+
152
+ with col_right:
153
+ st.markdown("### Generated MQL")
154
+
155
+ # show response
156
+ response = st.session_state.response
157
+ if response:
158
+ pipeline = extract_pipeline(response)
159
+ # print result as code block
160
+ st.code(
161
+ pipeline,
162
+ language="javascript",
163
+ )
164
+
165
+ # feedback form
166
+ with st.empty():
167
+ if st.session_state.feedback:
168
+ st.write("✅ Thank you for your feedback.")
169
+
170
+ elif st.session_state._id:
171
+ with st.form("feedback_inputs"):
172
+ radio = st.radio("Is the result correct?", ("Yes", "No"))
173
+ feedback = st.text_area(
174
+ "If not, please tell us what the issue is:",
175
+ )
176
+
177
+ # submit button
178
+ feedback_submit = st.form_submit_button(
179
+ "Submit Feedback", type="secondary"
180
+ )
181
+ if feedback_submit:
182
+ st.session_state.feedback = {
183
+ "correct": radio == "Yes",
184
+ "comment": feedback,
185
+ }
186
+
187
+ else:
188
+ doc = {
189
+ "ts": datetime.now(),
190
+ "doc": doc,
191
+ "question": question,
192
+ "generated_mql": pipeline,
193
+ "response": response,
194
+ "version": 3,
195
+ "model": MODEL_NAME,
196
+ }
197
+
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ openai==0.27.0
2
+ streamlit==1.17.0
3
+ pymongo==4.3.3
4
+ watchdog==3.0.0